The gamma- and delta-lactones of less than 12 carbons constitute a group of compounds of great interest to the flavour industry. It is possible to produce some of these lactones through biotechnology. For instance, ga...
详细信息
The gamma- and delta-lactones of less than 12 carbons constitute a group of compounds of great interest to the flavour industry. It is possible to produce some of these lactones through biotechnology. For instance, gamma-decalactone can be obtained by biotransformation of methyl ricinoleate. Among the organisms used for this bioproduction, Yarrowia lipolytica is a yeast of choice. It is well adapted to growth on hydrophobic substrates, thanks to its efficient and numerous lipases, cytochrome P450, acyl-CoA oxidases and its ability to produce biosurfactants. Furthermore, genetic tools have been developed for its study. This review deals with the production of lactones by Y. lipolytica with special emphasis on the biotransformation of methyl ricinoleate to gamma-decalactone. When appropriate, information from the lipid metabolism of other yeast species is presented.
Size of methyl ricinoleate droplets during biotransformation into gamma-decalactone by Yarrowia lipolytica was measured in both homogenized and non-homogenized media. In non-homogenized but shaken medium, droplets had...
详细信息
Size of methyl ricinoleate droplets during biotransformation into gamma-decalactone by Yarrowia lipolytica was measured in both homogenized and non-homogenized media. In non-homogenized but shaken medium, droplets had an average volume surface diameter d(32) Of 2.5 mu m whereas it was 0.7 mu m in homogenized and shaken medium. But as soon as yeast cells were inoculated, both diameters became similar at about 0.7 mu m and did not vary significantly until the end of the culture. The growth of Y. lipolytica in both media was very similar except for the lag phase which was lowered in homogenized medium conditions.
A compost mixture amended with soybean oil was enriched in microorganisms that transformed unsaturated fatty acids (UFAs). When oleic acid or 10-ketostearic acid was the selective fatty acid, Sphingobacterium thalpoph...
详细信息
A compost mixture amended with soybean oil was enriched in microorganisms that transformed unsaturated fatty acids (UFAs). When oleic acid or 10-ketostearic acid was the selective fatty acid, Sphingobacterium thalpophilum (NRRL B-23206, NRRL B-23208, NRRL B-23209, NRRL B-23210, NRRL B-23211, NRRL B-23212), Acinetobacter spp. (NRRL B-23207, NRRL B-23213), and Enterobacter cloacae (NRRL B-23264, NRRL B-23265, NRRL B-23266) represented isolates that produced either hydroxystearic acid, ketostearic acid, or incomplete decarboxylations. When ricinoleic (12-hydroxy-9-octadecenoic) acid was the selective UFA, Enterobacter cloacae (NRRL B-23257, NRRL B-23267) and Escherichia sp. (NRRL B-23259) produced 12-C and 14-C homologous compounds, and Pseudomonas aeruginosa (NRRL B-23256, NRRL B-23260) converted ricinoleate to a trihydroxyoctadecenoate product. Also, various Enterobacter, Pseudomonas, and Serratia spp. appeared to decarboxylate linoleate substrate incompletely. These saprophytic, compost bacteria were aerobic or facultative anaerobic Gram-negative and decomposed UFAs through decarboxylation, hydroxylation, and hydroperoxidation mechanisms.
暂无评论