微流控芯片(Lab-on-a-chip)是属于微机电系统(MEMS)的一个分支,又被称为微全分析系统(Micro Total Analysis System,μ-TAS)。随着微机械加工技术的进步,它在许多领域得到了广泛的应用。微混合器是生物和化学领域中实现流体在微尺度空...
详细信息
微流控芯片(Lab-on-a-chip)是属于微机电系统(MEMS)的一个分支,又被称为微全分析系统(Micro Total Analysis System,μ-TAS)。随着微机械加工技术的进步,它在许多领域得到了广泛的应用。微混合器是生物和化学领域中实现流体在微尺度空间快速高效混合的重要设备。一般来说,由于微混合器尺寸的影响,微通道内的流体以层流为主。特别是当雷诺数较低时,分子扩散作用是影响微通道内流体混合的主要因素。通常情况下分子的扩散效率很低,这会增加微通道中流体的混合时间,不利于微混合器在生产、生活中的实际应用。因此,研究设计更多的微混合器种类,提高微混合器的混合效果,对微混合器的发展具有重要意义。本文根据近年来国内外被动式微混合器的发展现状,结合大量研究人员的研究,介绍了微流控芯片领域的发展现状,描述了微混合器的基本理论知识以及在有限元模拟过程中的微通道的控制方程。总结了微通道中流体的混合方式,分子扩散和混沌对流。根据是否有外部驱动装置,微混合器可以分为主动式和被动式两种。主动式微混合器主要通过外部装置来驱动或扰动微通道中的流体,使微通道中的流体产生对流效应,从而促进流体的混合。被动微混合器主要通过微通道本身的几何形状或在微通道中增加障碍物的方式,增强流体之间的分子扩散作用或混沌对流效应,以此促进流体的混合。由于Re数取值在0到200范围内,所以微混合器中的流体属于层流流动。为了提高微混合器的混合效率,将Koch分形原理应用于被动微混合器的设计中,改善了微混合器中的混沌对流现象,促进了微通道中流体的混合。在研究中,通过不断优化微混合器中挡板的设计,将几个独立的挡板包含在同一个挡板组内,并调整挡板组或挡板组中每个挡板的结构,这包括分形的次数、挡板的高度和角度以及挡板的分布。例如,在每组挡板包含三个单独的挡板的数值模拟中,根据挡板高度,排列了六种组合的微混合器结构,通过大量的数值模拟,选择了混合效率最好的组合。然后还通过一个灵活的、低成本的CO激光加工系统,制造了以PMMA为基底的符合Koch分形原理的微混合器。通过改变加工次数、加工功率、加工速度等因素,研究了CO激光加工系统的参数对微通道质量的影响。然后,通过热键合机,对加工好的PMMA材料粘合,通入流体。最后,将数值模拟与实验结果进行了验证,两者的结果在误差范围内,表明了仿真结果的准确性。
暂无评论