设 f(n)表示把大于1的自然数 n 分解为因子大于1的不计因子次序的乘积的所有方式的个数.本文证明了对任意的 a∈[0,11/25],都存在一个自然数的子序列{a_n},n=1,2,…,使■logf(a_n)/loga_n=α利用 Bell 数的性质,本文证明了对于任给的正...
详细信息
设 f(n)表示把大于1的自然数 n 分解为因子大于1的不计因子次序的乘积的所有方式的个数.本文证明了对任意的 a∈[0,11/25],都存在一个自然数的子序列{a_n},n=1,2,…,使■logf(a_n)/loga_n=α利用 Bell 数的性质,本文证明了对于任给的正数 A,都存在一个正数 C(A) sum from n≤N f(n)≥C(A)Nlog^A N,此处 N 为自然数.
暂无评论