粒子群优化算法(Particle Swarm Optimization,PSO)是群集智能的典型代表,其参数较少且操作简单,故一直是智能优化算法研究应用的热点。然而PSO有易早熟和搜索精度不高的缺陷,针对此弊病,在基于仿真的优化(Simulation Based Optimizatio...
详细信息
粒子群优化算法(Particle Swarm Optimization,PSO)是群集智能的典型代表,其参数较少且操作简单,故一直是智能优化算法研究应用的热点。然而PSO有易早熟和搜索精度不高的缺陷,针对此弊病,在基于仿真的优化(Simulation Based Optimization,SBO)思想体系下,融合人工生命、基于Agent的计算和计算智能,提出面向SBO的PSO计算模型,并将PSO的系统研究和算法改良抽象为一个大规模组合优化问题的求解。最后利用一系列benchmark函数进行了仿真优化实验,取得了较好的结果,从而论证了本思想方法的可行性与可信性。
暂无评论