现有大多数跨域推荐(cross-domain recommendation,CDR)方法只是简单利用评分数据,对评论信息的挖掘不足。评论信息中往往包含用户的多个观点,如何充分利用评论信息中的细粒度观点挖掘其潜在价值以更好地解决跨域推荐冷启动和数据稀疏问题,成为当下跨域推荐的研究重点与难点。因此,设计了一种基于评论细粒度观点的跨域推荐模型(cross-domain recommendation model based on fine-grained opinion from review,FGOR-CDRM)。该模型主要由评论细粒度观点提取、辅助评论增强、跨域相关性学习三个模块组成。将文本卷积神经网络(text convolutional neural network,TextCNN)与门控机制结合,通过设置两个全局细粒度观点矩阵指导查询,有效提取评论信息的细粒度观点;在文本卷积之上增加一层卷积,利用相似非重叠用户的评论构建辅助文档,在增加训练数据多样性的同时有效缓解了数据稀疏;学习跨域细粒度观点之间的相关性,利用静态细粒度观点构建相关矩阵并进行语义匹配,实现目标域冷启动用户对项目的评分预测。在Amazon三个不同数据集(Book,Movies and TV,CDs and Vinyl)构成的三个领域对下进行实验,实验结果表明,FGOR-CDRM模型在三数据对下的表现均优于其他基准模型,以“电影-图书”数据对为例,FGOR-CDRM模型的(mean absolute error,MAE)比基线模型中ANR模型提高6.09%,比CDLFM模型提高3.58%。
为缓解跨域推荐中目标域数据稀疏和冷启动问题,综合增强嵌入、嵌入迁移、注意力机制调整和跨域推荐技术,提出一种融合深度特征提取和注意力机制的跨域推荐模型(cross-domain recommendation model of deep feature extraction and atten...
详细信息
为缓解跨域推荐中目标域数据稀疏和冷启动问题,综合增强嵌入、嵌入迁移、注意力机制调整和跨域推荐技术,提出一种融合深度特征提取和注意力机制的跨域推荐模型(cross-domain recommendation model of deep feature extraction and attention mechanism,CRDFEAM).利用潜在因子模型将类型相似度合并到矩阵分解过程,挖掘项目类型的隐性偏好.相比评分这一显性偏好,项目类型能更充分获取用户特征.在跨域迁移时,用分布对齐方式使域间差异最小化,以减少两个领域特征之间的数据分布差异.相对于直接迁移,分布对齐方式具有更强的可解释性.在特征调整过程中,引入多层感知机(multilayer perceptron,MLP)映射,并使用注意力机制进一步调整用户特征,使源域中没有出现过的目标域用户注意到源域用户的特征信息,同时也使源域中出现过的目标域用户注意到目标域中的项目特征信息.在真实数据集Movielens(M)、Netflix(N)和Douban(D)上的实验验证结果表明,引入MLP映射嵌入的CRDFEAM+模型的均方根误差(root mean square error,RMSE)值较基准模型跨域潜在特征映射(cross-domain latent feature mapping,CDLFM)平均提升9.88%,平均绝对误差(mean absolute error,MAE)值平均提升11.14%.研究验证了CRDFEAM+模型的跨域推荐效果,能够更充分地提取用户特征,有效缓解目标域信息不足问题.
暂无评论