光纤激光器因其光束质量高、体积小、抗干扰能力强、与光纤兼容性好等诸多优势而备受关注。高阶横模光纤激光器作为一种新型的光纤激光器,由于其能够输出具有特殊强度分布、相位分布以及偏振分布的高阶模式,在光传感、光通信、光学镊子、等离子体激发、材料加工等领域拥有重要应用价值。在高阶横模光纤激光器的相关研究中,输出模式的阶数、激光器斜率效率、输出波长数量、模式纯度以及激光器线宽等是表征高阶横模光纤激光器性能的关键技术参数。高质量的高阶横模光纤激光器为上述诸多领域的技术发展提供了重要技术支撑,是当下的研究热点。本文针对高阶横模光纤激光器输出模式阶数、光纤激光器的斜率效率及其输出波长数目、波长可调谐范围、激光器线宽等问题展开了一系列深入的理论和实验研究,主要研究内容和创新点如下:1.针对传统高阶横模光纤激光器输出模式阶数低、易受模式转换器件的转换率和插入损耗影响的问题,提出了一种可以直接从光纤激光器中输出高阶横模的方案。该方案是通过控制掺铒光纤中铒离子的分布范围实现特定矢量模式输出的,同时激光器是直接振荡在该矢量模式上的。首先,设计并仿真实现了一种可直接输出高阶矢量模式(HE、TE、HE、EH和HE模式)的光纤激光器,该光纤激光器输出高阶矢量模式的纯度可以达到99.99%、激光器的斜率效率高达61.25%;其次,设计并仿真实现了一种角向偏振光束(TE模式)输出的光纤激光器,该光纤激光器直接振荡在TE01模式上,输出模式纯度可以达到99.99%,斜率效率可以达到66.15%。所提出来的设计方案对光纤激光器实现更高阶矢量模式输出以及提升光纤激光器的斜率效率等方面具有指导意义。2.提出了一种基于复合腔结构和模式选择滤波器的单纵模窄线宽高阶矢量模式光纤激光器。复合腔是由一个主腔和两个被动子腔组成的,用于实现激光器的单纵模操作。模式选择滤波器是由光纤布拉格光栅和机械长周期光纤光栅(long period fiber grating,LPFG)构成,用于实现波长和模式的选择。通过调整偏振控制器、机械LPFG上的倾斜角度以及施加在LPFG上的压力,该激光器在1543.35 nm(1544.38 nm)处成功地输出了径向偏振光束(TM01模式)和角向偏振光束。激光器的信噪比(signal-to-noise ratio,SNR)大于60 dB,20d B线宽分别为5.7 k Hz和6.8 k Hz,输出模式纯度大于91.8%。该光纤激光器可以应用于激光雷达、密集波分复用系统以及光纤传感等领域。3.针对高阶标量模式光纤激光器的输出波长数相对较少的问题,提出了两种输出多波长LP模式的光纤激光器。研制了模式选择耦合器(mode selective coupler,MSC),并将该MSC用于所提出的两种多波长LP模式光纤激光器以实现LP模式的输出。一种是基于马赫-曾德尔滤波器(Mach-Zehnde filter,MZF)的光纤激光器,实验获得了单波长到四波长的LP模式输出,其信噪比高于36 d B,模式纯度高于95%。另一种是基于双萨格纳克梳状滤波器(dual-Sagnac comb filter,DSCF)的光纤激光器,实验获得了一到六个波长的LP模式输出,其SNR高于40 d B,LP模式的纯度高于95%。这两种光纤激光器可应用于波分-模分混合复用系统,以进一步提升通信容量。4.针对轨道角动量模式光纤激光器输出波长数相对较少的问题,提出并搭建了一种基于MSC、MZF和Sagnac环滤波器的多波长轨道角动量模式光纤激光器。其中,MSC用于实现基模到LP模式的转换,在MSC的少模输出端加挤压式偏振控制器用于生成轨道角动量模式。研究了滤波器的工作原理,其中MZF用于提供梳状滤波谱,Sagnac环滤波器用于增加波长的调谐范围。搭建的光纤激光器,实验上获得了一到四个波长、拓扑电荷数为±1的轨道角动量模式输出,并且波长的可调谐范围高达22.64 nm,SNR大于34 d B,模式纯度高于95%。该光纤激光器的成功研制,可以为光通信系统、光传感系统提供优质的光源。5.提出了一种面向高阶横模光纤激光器应用的FP(Fabry-Perot,FP)滤波器。使用倾斜光纤布拉格光栅作为FP滤波器的反射镜与模式转换器,与传统的MZF,Sagnac环滤波器以及FP滤波器相比,该滤波器在特定波长处可以实现矢量模式的转换,同时具备窄带特性。理论研究了倾斜光纤布拉格光栅的倾斜角度对FP滤波器传输特性的影响,当倾斜角度为0°时,该滤波器表现出了波长选择特性,具备窄线宽特性。当倾斜角度为2°时,该滤波器表现出了波长选择和模式选择特性,同时具备模式转换功能和窄线宽特性。与此同时,也研究了倾斜光纤布拉格光栅的长度、调制深度以及光纤长度对FP滤波器传输特性的影响。该FP滤波器可以应用于光纤激光器,波分/模分
随着科技与社会的发展,人们对于数据传输容量提出了更高的要求。为了满足日益增长的数据传输容量需求,在光纤通信系统中,各种复用技术已经被广泛应用。其中,轨道角动量(Orbital angular momentum,OAM)模式复用作为空分复用(Spatial division multiplexing,SDM)技术的一种新方式,不同的OAM模式具有正交性,理论上具有无穷的拓扑荷数,可极大地提高光纤通信系统的传输容量。为了实现OAM模式的长距离传输,高性能的涡旋光纤放大器在光纤通信系统中起到了非常重要的作用。本文从提高支持OAM模式稳定传输的数量,减小差分模式增益(Differential mode gain,DMG)与噪声系数(Noise figure,NF),以及保证长距离传输中OAM模式质量方面,对涡旋光纤放大器的性能进行了研究。主要内容如下:(1)介绍了OAM模式理论与掺铒光纤放大器(Erbium-doped fiber amplifier,EDFA)的理论模型,推导得到了计算OAM-EDFA噪声系数的计算公式。(2)设计了一种环形芯部分掺铒的光纤结构,结合速率方程,研究了OAM模式增益、DMG与NF随光纤长度、泵浦功率、信号输入功率以及掺铒分布与浓度的变化。结果表明,在C波段(1530~1565 nm),该光纤可以支持22个OAM模式稳定传输,有效折射率差均大于10-4。并且,通过对上述各个工作参数的优化,提高了该光纤放大器的性能,可以使所有OAM模式增益在整个C波段都大于20.39d B,DMG小于0.03 d B,NF小于3.8 d B。(3)基于所设计的OAM光纤,研究了该光纤的弯曲对于传输OAM模式数量的影响,以及OAM模式损耗系数与弯曲半径、信号波长之间的关系。结合速率方程,研究了环形芯光纤在弯曲状态下,其光纤长度、弯曲半径和信号波长的变化对光纤放大器增益特性的影响。结果表明,在光纤弯曲半径为5 mm时,仅支持10个OAM模式稳定传输(|l|=1、2、3)。在光纤长度为8.5 m,弯曲半径为5 mm时,l?3的OAM模式增益大于23.4 d B,DMG小于0.2 d B,NF小于5.6 d B。与目前所报道的研究成果相比,本文提出的涡旋光纤放大器具有更低的差分模式增益与噪声系数。本文对涡旋光纤在弯曲状态下的增益特性研究,对于涡旋光纤的实际应用具有一定参考价值。
暂无评论