针对转向架构架磁粉探伤缺陷识别环节人工目测效率低的现状,提出一种基于YOLO-CET(You Only Look Once based on CoTNet-Efficient-Transformer blocks)的探伤图像缺陷自动识别算法,实现对构架表面真伪缺陷的智能识别。以YOLOv5(You Onl...
详细信息
针对转向架构架磁粉探伤缺陷识别环节人工目测效率低的现状,提出一种基于YOLO-CET(You Only Look Once based on CoTNet-Efficient-Transformer blocks)的探伤图像缺陷自动识别算法,实现对构架表面真伪缺陷的智能识别。以YOLOv5(You Only Look Once version 5)为基础模型,在骨干特征提取网络引入轻量化CoTNet(Contextual Transformer Networks)网络层,实现缺陷特征的多尺度融合与提取。加入高效通道注意力机制,在不增加网络计算量的同时提高模型的鲁棒性和泛化性。增加一个小尺寸缺陷检测头用于减轻不同尺寸特征带来的尺度方差影响,同时引入视觉自注意力模块,增强小目标缺陷的抓取识别能力。利用自建的构架表面缺陷探伤数据集进行测试,结果表明,与YOLOv5相比,所提出的YOLO-CET使检测平均精度提升33.8%,F1-Score提升0.26,浮点运算量仅增加1.5 B,该模型可实现缺陷的自动检测,有效解决背景误判、细小缺陷漏检等问题。
为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第4层低频系数作为Kriging模型输出,并通过改进的灰狼算法(grey wolf optimizer,GWO)确定Kriging模型相关参数值。最后,以待修正参数作为状态向量,以Kriging模型预测的小波系数和真实响应的小波系数之差的平方和作为观测函数,通过无迹卡尔曼滤波算法求解待修正参数。结果表明,所提方法对构架模型参数修正有良好的精度、效率和鲁棒性,且在0.03 s内收敛到真实值。
暂无评论