经典的鲁棒主成分分析(Robust Principal Component Analysis,RPCA)目标检测算法使用l1范数逐一判别每一像素点是否属于运动目标,未能考虑到运动目标在空间分布的连续性,不利于提升运动目标检测的鲁棒性.本文提出了一种基于l0群稀疏RPC...
详细信息
经典的鲁棒主成分分析(Robust Principal Component Analysis,RPCA)目标检测算法使用l1范数逐一判别每一像素点是否属于运动目标,未能考虑到运动目标在空间分布的连续性,不利于提升运动目标检测的鲁棒性.本文提出了一种基于l0群稀疏RPCA模型的运动目标检测方法.首先运用Ncuts算法进行区域过分割,生成多个同性区域,将其作为群稀疏约束的分组信息;第二步构造基于l0群稀疏RPCA模型,运用群稀疏准则判别过分割后的各同性区域是否为运动目标,采用交替方向乘子算法对模型进行快速求解,约束过分割形成的同性区域具有相同检测结果,进而将背景环境和运动前景分离,能够更加准确地度量运动目标的区域边界,且对复杂的背景扰动更加鲁棒,达到了运动目标鲁棒检测的目的.
目前,中国农村的变电站通常规模比较大,电气设备都比较传统,设备自动化和智能化程度普遍较低,因此在变电站的日常运行维护中对人力资源的要求相对较高。在日常巡检与突发故障检修时,都需要工作人员进入现场操作。视频监测技术可以实现变电站工作人员监测的远程化、智能化、自动化,使工作人员的安全性大大提高,而运动目标检测是其中的关键。为了改善常用目标检测算法在农村变电站安全监测上存在的问题,该文提出了一种多域融合(时域空域与频域)的运动目标检测(time-domain space-domain and frequency-domain fusion,TSFF)算法。首先在时域上选取连续多帧图像,接着选取多帧图像相同位置处像素点构成时域信号,通过短时傅里叶变换在频域观察频率变化幅值,并结合空域上目标像素点水平与垂直4个方向上扩展邻域短时傅里叶变换频率变化幅值,最终判断出该像素点位置为背景、噪声或运动目标,完成运动目标分割。该方法较好地克服了传统背景差分法受到光照、阴影、噪声等变化的影响,相较于帧间差分法最大限度地保留了运动目标的信息,并克服了自适应背景建模算法对于出现高频扰动噪声检测效果较差的问题。试验表明,该算法在保留运动目标信息的同时,最大限度去除了背景。
暂无评论