脉冲噪声的随机性和高对比度导致其在遥感图像中难以预测和定位,为了去除脉冲噪声,本文提出了一种融合分数阶全变分先验和重叠组稀疏先验的遥感图像复原算法。该模型采用l0范数作为数据保真项以避免l1范数的过度惩罚,利用重叠组稀疏先验来消除阶梯效应,同时分数阶全变分先验能够更有效地保留图像中的边缘和纹理信息。我们使用优化最小化算法和交替方向乘子法来进行求解,并与L0-OGSTV、HNHOTV、L0-TV三种算法进行对比,实验结果表明,本文所提出的算法在峰值信噪比和结构相似度上均优于其他几种算法。The randomness and high contrast of impulse noise cause it to be difficult to predict and localize in remote sensing images. In order to remove the impulse noise, this paper proposes a remote sensing image restoration algorithm that integrates fractional-order total variational prior and overlapping group sparse prior. The model adopts the l0 norm as the data fidelity term to avoid the over-penalization of the l1 norm, and utilizes the overlapping group sparse prior to eliminating the staircase effect, while the fractional-order total variation prior can retain the edge and texture information in the image more effectively. We use the majorization-minimization algorithm and the alternating direction multiplier method to solve the problem and compare it with the three algorithms, L0-OGSTV, HNHOTV, and L0-TV, and the experimental results show that the algorithm proposed in this paper outperforms the other algorithms in terms of the peak signal-to-noise ratio and the structural similarity.
为了更好地保留核环境下图像降噪后的细节信息,提出了基于混合二阶全变分的抗核辐射图像降噪方法。将非凸二阶全变分与重叠组稀疏正则化相结合,使用交替方向乘子法(alternating direction method of multiplier,ADMM)和增广拉格朗日乘...
详细信息
为了更好地保留核环境下图像降噪后的细节信息,提出了基于混合二阶全变分的抗核辐射图像降噪方法。将非凸二阶全变分与重叠组稀疏正则化相结合,使用交替方向乘子法(alternating direction method of multiplier,ADMM)和增广拉格朗日乘子法对全局问题进行优化求解,多次迭代后得到基本降噪图像;将多次降噪后的基本降噪图像进行差值迭代,使核辐射图像中大范围跳变的灰度值更加接近原始图像灰度值;根据核噪声的特点,设计算法模拟出核噪声斑块。通过在真实核环境下采集的数据集和模拟的核噪声数据集上进行实验,峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似性(structural similarity,SSIM)等指标的变化及处理后的视觉效果表明,提出的算法在保留图像细节信息方面优于对比算法。
暂无评论