可再生能源的波动性、随机性和需求响应的不确定性对电力系统的静态电压稳定评估带来全新挑战,静态电压稳定域(static voltage stability region,SVSR)是分析和评估含随机性和不确定性因素影响的电力系统电压稳定性的重要工具。传统...
详细信息
可再生能源的波动性、随机性和需求响应的不确定性对电力系统的静态电压稳定评估带来全新挑战,静态电压稳定域(static voltage stability region,SVSR)是分析和评估含随机性和不确定性因素影响的电力系统电压稳定性的重要工具。传统基于连续潮流的SVSR构建方法虽可保证构建精度,但计算效率较低。为提升高精度SVSR的构建效率,提出一种快速搜索SVSR边界的新方法。该方法基于SVSR边界的拓扑特性,根据SVSR边界上相邻临界点之间的关联关系,构造SVSR边界快速搜索的通用数学模型。针对该模型,首先采用连续潮流确定初始SVSR边界点,然后采用预测–校正方法求解所提模型,实现SVSR边界上所有边界点的快速搜索,进而构建出SVSR边界。最后,通过WSCC 3机9节点系统和IEEE-300节点系统对所提方法的正确性和有效性进行校验,结果表明,所提方法可实现高精度SVSR边界的快速搜索。
针对电力系统静态电压稳定域边界(staticvoltage stability region boundary,SVSRB)近似解析表达式的构建问题,该文提出一种SVSRB近似的空间切向量法。首先采用SVSRB搜索的预测–校正算法搜索静态电压稳定域(static voltagestabilityreg...
详细信息
针对电力系统静态电压稳定域边界(staticvoltage stability region boundary,SVSRB)近似解析表达式的构建问题,该文提出一种SVSRB近似的空间切向量法。首先采用SVSRB搜索的预测–校正算法搜索静态电压稳定域(static voltagestabilityregion,SVSR)临界点,然后基于该临界点处空间切向量的空间角与最大空间角阈值的关系,对SVSRB进行初始分段近似,以SVSR临界点到初始近似边界的距离与最大距离误差阈值的关系为依据,对初始近似边界进行二次近似,计及SVSRB曲率的变化,得到更为精确的SVSR分段超平面近似边界,实现SVSRB近似解析表达式的构建,该方法可有效提高SVSRB近似精度,增强电力系统电压稳定的态势感知能力。最后,将所提方法应用于WECC3机9节点测试系统和欧洲电网13659节点测试系统,结果表明,所提方法可有效实现SVSRB精确近似解析表达和准确构建。
暂无评论