咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 1 篇 capsule layers
  • 1 篇 1d convolutional...
  • 1 篇 capsnet-based fr...
  • 1 篇 deep architectur...
  • 1 篇 hyperspectral re...
  • 1 篇 cnn-based counte...
  • 1 篇 spectral-spatial...
  • 1 篇 deep learning-ba...
  • 1 篇 hsi classificati...
  • 1 篇 feature extracti...
  • 1 篇 remote sensing
  • 1 篇 geophysical imag...
  • 1 篇 hyperspectral im...
  • 1 篇 image classifica...
  • 1 篇 convolutional ne...
  • 1 篇 dynamic routing ...
  • 1 篇 learning (artifi...
  • 1 篇 capsule network
  • 1 篇 2d convolutional...
  • 1 篇 hyperspectral im...

机构

  • 1 篇 beijing inst tec...
  • 1 篇 beijing inst tec...

作者

  • 1 篇 zhao baojun
  • 1 篇 feng fan
  • 1 篇 jia sen
  • 1 篇 wang wenzheng
  • 1 篇 tang linbo

语言

  • 1 篇 英文
检索条件"主题词=2D convolutional layers"
1 条 记 录,以下是1-10 订阅
排序:
Spectral-spatial classification of hyperspectral remote sensing image based on capsule network
收藏 引用
JOURNAL OF ENGINEERING-JOE 2019年 第21期2019卷 7352-7355页
作者: Jia, Sen Zhao, Baojun Tang, Linbo Feng, Fan Wang, WenZheng Beijing Inst Technol Sch Informat & Elect Beijing Peoples R China Beijing Inst Technol Beijing Key Lab Embedded Real Time Informat Proc Beijing 100081 Peoples R China
Hyperspectral image (HSI) classification is a hot topic in remote sensing community;many researchers have made a great deal of effort in this domain. Recently, deep learning-based manner paves a new way to better clas... 详细信息
来源: 评论