咨询与建议

限定检索结果

文献类型

  • 45 篇 期刊文献
  • 28 篇 会议

馆藏范围

  • 73 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 64 篇 工学
    • 50 篇 计算机科学与技术...
    • 26 篇 生物医学工程(可授...
    • 16 篇 电气工程
    • 7 篇 软件工程
    • 4 篇 生物工程
    • 2 篇 机械工程
    • 2 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 网络空间安全
  • 41 篇 医学
    • 25 篇 特种医学
    • 15 篇 临床医学
    • 12 篇 基础医学(可授医学...
    • 4 篇 医学技术(可授医学...
    • 1 篇 公共卫生与预防医...
    • 1 篇 中西医结合
  • 12 篇 理学
    • 6 篇 生物学
    • 5 篇 物理学
    • 3 篇 化学
    • 2 篇 数学
    • 1 篇 统计学(可授理学、...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 公共管理
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 农学

主题

  • 73 篇 3d medical image...
  • 9 篇 transformer
  • 6 篇 transformers
  • 5 篇 deep learning
  • 5 篇 three-dimensiona...
  • 5 篇 image segmentati...
  • 5 篇 semi-supervised ...
  • 4 篇 biomedical imagi...
  • 4 篇 convolutional ne...
  • 3 篇 vision transform...
  • 3 篇 self-supervised ...
  • 3 篇 lightweight
  • 3 篇 cnn
  • 3 篇 3d u-net
  • 3 篇 lightweight netw...
  • 3 篇 sparse annotatio...
  • 2 篇 brats
  • 2 篇 variational auto...
  • 2 篇 3d zernike descr...
  • 2 篇 task analysis

机构

  • 3 篇 zhejiang univ co...
  • 2 篇 beijing inst tec...
  • 2 篇 zhejiang lab res...
  • 2 篇 guangdong key la...
  • 2 篇 univ shanghai sc...
  • 2 篇 college of elect...
  • 2 篇 ningxia univ sch...
  • 2 篇 jiangxi univ sci...
  • 2 篇 cranfield univ s...
  • 2 篇 sir run run shaw...
  • 1 篇 ocean univ china...
  • 1 篇 guangdong prov p...
  • 1 篇 nanjing univ nat...
  • 1 篇 china acad chine...
  • 1 篇 university of mi...
  • 1 篇 jiangnan univ sc...
  • 1 篇 tianjin univ com...
  • 1 篇 shanghai ai lab ...
  • 1 篇 mardan univ engn...
  • 1 篇 school of pharma...

作者

  • 2 篇 flitton greg t.
  • 2 篇 zhang lei
  • 2 篇 wei siyi
  • 2 篇 tong ruofeng
  • 2 篇 sarker ruhul
  • 2 篇 li zheng
  • 2 篇 huang guoheng
  • 2 篇 zheng jian
  • 2 篇 lin lanfen
  • 2 篇 zhang dingwen
  • 2 篇 megherbi najla
  • 2 篇 zhang jinhui
  • 2 篇 breckon toby p.
  • 2 篇 yu xiangchun
  • 2 篇 xia yong
  • 2 篇 chen qingqing
  • 2 篇 yang fan
  • 2 篇 xie yutong
  • 2 篇 essam daryl
  • 2 篇 wang bo

语言

  • 67 篇 英文
  • 4 篇 其他
  • 2 篇 中文
检索条件"主题词=3D Medical Image Segmentation"
73 条 记 录,以下是11-20 订阅
排序:
An evolutionary Chameleon Swarm Algorithm based network for 3d medical image segmentation
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 239卷
作者: Rajesh, Chilukamari Sadam, Ravichandra Kumar, Sushil Natl Inst Technol Warangal Dept Comp Sci & Engn Warangal 506004 Telangana India Natl Inst Technol Kurukshetra Dept Comp Engn Kurukshetra 136119 Haryana India
developing 3d Convolutional Neural Networks (CNNs) for medical image segmentation is challenging due to the limited number of available labeled medical images and computational resources. Effective design of a 3d CNN ... 详细信息
来源: 评论
Hybrid Masked image Modeling for 3d medical image segmentation
收藏 引用
IEEE JOURNAL OF BIOmedical ANd HEALTH INFORMATICS 2024年 第4期28卷 2115-2125页
作者: Xing, Zhaohu Zhu, Lei Yu, Lequan Xing, Zhiheng Wan, Liang Tianjin Univ Med Sch Tianjin 300070 Peoples R China Hong Kong Univ Sci & Technol Guangzhou 510530 Peoples R China Hong Kong Univ Sci & Technol Henan Key Lab Imaging & Intelligent Proc Guangzhou 510530 Peoples R China Univ Hong Kong Hong Kong Peoples R China Tianjin Univ Haihe Hosp Tianjin 300072 Peoples R China Tianjin Univ Coll Comp & Intelligence Tianjin Peoples R China
Masked image modeling (MIM) with transformer backbones has recently been exploited as a powerful self-supervised pre-training technique. The existing MIM methods adopt the strategy to mask random patches of the image ... 详细信息
来源: 评论
Hybrid 3d medical image segmentation Using CNN and Frequency Transformer Fusion
收藏 引用
ARABIAN JOURNAL FOR SCIENCE ANd ENGINEERING 2024年 1-14页
作者: Labbihi, Ismayl Meslouhi, Othmane El Elassad, Zouhair Elamrani Abou Benaddy, Mohamed Kardouchi, Mustapha Akhloufi, Moulay Ibn Zohr Univ Fac Sci LabSI Lab Agadir 80000 Morocco Cadi Ayyad Univ Natl Sch Appl Sci SARS Grp Safi 46000 Morocco Univ Moncton Dept Comp Sci PRIME Lab 18 Antonine Maillet Ave Moncton NB E1A 3E9 Canada
medical image segmentation poses a significant challenge, particularly with 3d images. This study presents a novel hybrid network for 3d medical image segmentation, which sequentially integrates convolutional neural n... 详细信息
来源: 评论
Hybrid transformer-CNN with boundary-awareness network for 3d medical image segmentation
收藏 引用
APPLIEd INTELLIGENCE 2023年 第23期53卷 28542-28554页
作者: He, Jianfei Xu, Canhui Qingdao Univ Sci & Technol Sch Informat Sci & Technol Qingdao 266000 Shandong Peoples R China
3d volumetric medical image segmentation is a crucial task in computer-aided diagnosis applications, but it remains challenging due to low contrast and boundary ambiguity between organs and surrounding tissues. Consid... 详细信息
来源: 评论
Unsupervised Cross-Modality Adaptation via dual Structural-Oriented Guidance for 3d medical image segmentation
收藏 引用
IEEE TRANSACTIONS ON medical IMAGING 2023年 第6期42卷 1774-1785页
作者: Xian, Junlin Li, Xiang Tu, dandan Zhu, Senhua Zhang, Changzheng Liu, Xiaowu Li, Xin Yang, Xin Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan 430074 Peoples R China Huawei Technol Co Ltd Cloud BU Shenzhen 511464 Peoples R China Huazhong Univ Sci & Technol Union Hosp Tongji Med Coll Dept Radiol Wuhan 430074 Peoples R China Hubei Prov Key Lab Mol Imaging Wuhan 430022 Peoples R China
deep convolutional neural networks (CNNs) have achieved impressive performance in medical image segmentation;however, their performance could degrade significantly when being deployed to unseen data with heterogeneous... 详细信息
来源: 评论
Adaptive decomposition and Shared Weight Volumetric Transformer Blocks for Efficient Patch-Free 3d medical image segmentation
收藏 引用
IEEE JOURNAL OF BIOmedical ANd HEALTH INFORMATICS 2023年 第10期27卷 4854-4865页
作者: Wang, Hongyi Xu, Yingying Chen, Qingqing Tong, Ruofeng Chen, Yen-Wei Hu, Hongjie Lin, Lanfen Zhejiang Univ Coll Comp Sci & Technol Hangzhou 310063 Peoples R China Zhejiang Lab Res Ctr Healthcare Data Sci Hangzhou 311121 Peoples R China Sir Run Run Shaw Hosp Dept Radiol Hangzhou 310016 Peoples R China Ritsumeikan Univ Coll Informat Sci & Engn Kusatsu 5250058 Japan
High resolution (HR) 3d medical image segmentation is vital for an accurate diagnosis. However, in the field of medical imaging, it is still a challenging task to achieve a high segmentation performance with cost-effe... 详细信息
来源: 评论
Semi-Supervised 3d medical image segmentation Based on dual-Task Consistent Joint Learning and Task-Level Regularization
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY ANd BIOINFORMATICS 2023年 第4期20卷 2457-2467页
作者: Chen, Qi-Qi Sun, Zhao-Hui Wei, Chuan-Feng Wu, Edmond Q. Ming, dong Shanghai Jiao Tong Univ Dept Automat Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ Sch Mech Engn Shanghai 200240 Peoples R China CAST Inst Manned Space Syst Engn Human Space Flight Syst Engn Div Beijing 100094 Peoples R China Shanghai Jiao Tong Univ Key Lab Syst Control & Informat Proc Minist Educ Shanghai 200240 Peoples R China Natl Aeronaut Radio Elect Res Inst Sci & Technol Av Integrat Lab Shanghai 200240 Peoples R China Tianjin Univ Acad Med Engn & Translat Med Tianjin 300072 Peoples R China Tianjin Univ Coll Precis Instruments & Optoelect Engn Tianjin 300072 Peoples R China
Semi-supervised learning has attracted wide attention from many researchers since its ability to utilize a few data with labels and relatively more data without labels to learn information. Some existing semi-supervis... 详细信息
来源: 评论
3d medical image segmentation using parallel transformers
收藏 引用
PATTERN RECOGNITION 2023年 第1期138卷
作者: Yan, Qingsen Liu, Shengqiang Xu, Songhua dong, Caixia Li, Zongfang Shi, Javen Qinfeng Zhang, Yanning dai, duwei Northwestern Polytech Univ Sch Comp Sci Xian 710072 Peoples R China Xi An Jiao Tong Univ Affiliated Hosp 2 Inst Med Artificial Intelligence Xian 710004 Peoples R China Univ Adelaide Australian Inst Machine Learning Adelaide 5005 Australia
Most recent 3d medical image segmentation methods adopt convolutional neural networks (CNNs) that rely on deep feature representation and achieve adequate performance. However, due to the convolutional architectures h... 详细信息
来源: 评论
Target area distillation and section attention segmentation network for accurate 3d medical image segmentation
收藏 引用
HEALTH INFORMATION SCIENCE ANd SYSTEMS 2023年 第1期11卷 9页
作者: Xie, Ruiwei Pan, dan Zeng, An Xu, Xiaowei Wang, Tianchen Ullah, Najeeb Ji, Yuzhu Guangdong Univ Technol Guangzhou Guangdong Peoples R China Guangdong Polytech Normal Univ Guangzhou Guangdong Peoples R China Guangdong Prov Peoples Hosp Guangzhou Guangdong Peoples R China Mardan Univ Engn & Technol Mardan Pakistan
3d medical image segmentation has an essential role in medical image analysis, while attention mechanism has improved the performance by a large margin. However, existing methods obtained the attention coefficient in ... 详细信息
来源: 评论
dUAL SELF-dISTILLATION OF U-SHAPEd NETWORKS FOR 3d medical image segmentation  21
DUAL SELF-DISTILLATION OF U-SHAPED NETWORKS FOR 3D MEDICAL I...
收藏 引用
21st IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Banerjee, Soumyanil dong, Ming Glide-Hurst, Carri Wayne State Univ Dept Comp Sci Detroit MI 48202 USA Univ Wisconsin Dept Human Oncol Madison WI USA
U-shaped networks and its variants have demonstrated exceptional results for medical image segmentation. In this paper, we propose a novel dual self-distillation (dSd) framework for U-shaped networks for 3d medical im... 详细信息
来源: 评论