咨询与建议

限定检索结果

文献类型

  • 40 篇 期刊文献
  • 24 篇 会议

馆藏范围

  • 64 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 64 篇 工学
    • 52 篇 计算机科学与技术...
    • 31 篇 电气工程
    • 16 篇 软件工程
    • 11 篇 信息与通信工程
    • 4 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 2 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 网络空间安全
  • 9 篇 理学
    • 4 篇 物理学
    • 3 篇 地球物理学
    • 2 篇 生物学
    • 1 篇 化学
  • 6 篇 医学
    • 6 篇 临床医学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 64 篇 3d object classi...
  • 11 篇 deep learning
  • 11 篇 3d object retrie...
  • 8 篇 point cloud
  • 6 篇 three-dimensiona...
  • 5 篇 feature extracti...
  • 5 篇 solid modeling
  • 5 篇 3d object recogn...
  • 4 篇 multi-view
  • 4 篇 convolutional ne...
  • 3 篇 computational mo...
  • 3 篇 visualization
  • 3 篇 shape
  • 3 篇 point cloud comp...
  • 3 篇 convolutional ne...
  • 3 篇 gan
  • 2 篇 noisy conditions
  • 2 篇 volumetric part
  • 2 篇 similarity measu...
  • 2 篇 multi-hypergraph...

机构

  • 4 篇 tianjin univ sch...
  • 3 篇 univ waterloo de...
  • 3 篇 north china univ...
  • 2 篇 sidi mohamed ben...
  • 2 篇 xidian univ sch ...
  • 2 篇 kfupm ctr intell...
  • 2 篇 kfupm dept infor...
  • 2 篇 jouf univ coll c...
  • 2 篇 fuzhou univ coll...
  • 2 篇 guilin univ elec...
  • 2 篇 shanghai univ sc...
  • 2 篇 xiamen univ sch ...
  • 2 篇 chinese acad sci...
  • 2 篇 mohammed v univ ...
  • 2 篇 kfupm sdaia kfup...
  • 2 篇 univ washington ...
  • 2 篇 univ sidi mohame...
  • 2 篇 guangxi normal u...
  • 2 篇 univ hosp fez de...
  • 2 篇 sidi mohamed ben...

作者

  • 4 篇 liu an-an
  • 4 篇 qjidaa hassan
  • 3 篇 wang cheng
  • 3 篇 li jonathan
  • 3 篇 song wei
  • 3 篇 sohel ferdous
  • 2 篇 mesbah abderrahi...
  • 2 篇 zhang lingfeng
  • 2 篇 ning xin
  • 2 篇 song dan
  • 2 篇 gao yue
  • 2 篇 wang junyi
  • 2 篇 usman muhammad
  • 2 篇 lin jiming
  • 2 篇 zhang wenhui
  • 2 篇 zhou he-yu
  • 2 篇 atmosukarto indr...
  • 2 篇 tian yifei
  • 2 篇 berrahou aissam
  • 2 篇 helmy tarek

语言

  • 62 篇 英文
  • 1 篇 土耳其文
  • 1 篇 其他
检索条件"主题词=3D Object Classification"
64 条 记 录,以下是1-10 订阅
排序:
Balanced Class-Incremental 3d object classification and Retrieval
收藏 引用
IEEE TRANSACTIONS ON KNOWLEdGE ANd dATA ENGINEERING 2024年 第1期36卷 35-48页
作者: Liu, An-An Lu, Haochun Zhou, Heyu Li, Tianbao Kankanhalli, Mohan Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei 230088 Anhui Peoples R China Natl Univ Singapore Sch Comp Singapore 117543 Singapore
Most existing 3d object classification and retrieval algorithms rely on one-off supervised learning on closed 3d object sets and tend to provide rigid convolutional neural networks with little scalability. Such limita... 详细信息
来源: 评论
Adaptive Multi-Hypergraph Convolutional Networks for 3d object classification
收藏 引用
IEEE TRANSACTIONS ON MULTIMEdIA 2023年 25卷 4842-4855页
作者: Nong, Liping Peng, Jie Zhang, Wenhui Lin, Jiming Qiu, Hongbing Wang, Junyi Xidian Univ Sch Telecommun Engn Xian 710071 Peoples R China Guangxi Normal Univ Coll Phys & Technol Guilin 541004 Peoples R China Guilin Univ Elect Technol Sch Comp Sci & Informat Secur Guilin 541004 Peoples R China Guilin Univ Elect Technol Sch Informat & Commun Guilin 541004 Peoples R China
3d object classification is an important task in computer vision. In order to explore the high-order and multi-modal correlations among 3d data, we propose an adaptive multi-hypergraph convolutional networks (AMHCN) f... 详细信息
来源: 评论
AdaBoost-Based 3d object classification from Surface and depth Map descriptors  24
AdaBoost-Based 3D Object Classification from Surface and Dep...
收藏 引用
16th International Conference on Machine Learning and Computing (ICMLC)
作者: dou, Wentao Sun, Jiaqi Niu, dongmei Peng, Jingliang Jinan Univ Sch Informat Sci & Engn Shandong Prov Key Lab Network Based Intelligent C Guangzhou Peoples R China
In this work, we aim to advance the traditional approach to 3d object classification for its lighter computation and memory costs than the deep learning based approach. Specifically, we propose a novel algorithm that ... 详细信息
来源: 评论
Selective Multi-View deep Model for 3d object classification
Selective Multi-View Deep Model for 3D Object Classification
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Alzahrani, Mona Usman, Muhammad Anwar, Saeed Helmy, Tarek KFUPM Dept Informat & Comp Sci Dhahran Saudi Arabia Jouf Univ Coll Comp & Informat Sci Sakaka Saudi Arabia KFUPM SDAIA KFUPM Joint Res Ctr Artificial Intelligence Dhahran Saudi Arabia KFUPM Ctr Intelligent Secure Syst Dhahran Saudi Arabia
3d object classification has emerged as a practical technology with applications in various domains, such as medical image analysis, automated driving, intelligent robots, and crowd surveillance. Among the different a... 详细信息
来源: 评论
diagnose Label Errors for 3d object classification
Diagnose Label Errors for 3D Object Classification
收藏 引用
2023 International Conference on Electronics, Information, and Communication, ICEIC 2023
作者: Wang, Jiayue Wang, Ren Kim, Tae Sung Kim, Jin-Sung Lee, Hyuk-Jae Seoul National University Electrical and Computer Engineering Seoul Korea Republic of Sun Moon University Electronic Engineering Asan Korea Republic of
3d object classification is widely used in many real-life scenarios and has recently become a popular research area. Meanwhile, 3d datasets tend to be larger and more complex, increasing the difficulty of labeling. Si... 详细信息
来源: 评论
Point Cloud-Based 3d object classification With Non Local Attention and Lightweight Convolution Neural Networks
收藏 引用
IEEE ACCESS 2024年 12卷 158530-158545页
作者: Karthik, R. Inamdar, Rohan Sundarr, S. Kavin Cho, Jaehyuk Veerappampalayam Easwaramoorthy, Sathishkumar Vellore Inst Technol CCPS Chennai 600127 India Vellore Inst Technol Sch Comp Sci & Engn SCOPE Chennai 600127 India Jeonbuk Natl Univ Dept Software Engn Div Elect & Informat Engn Jeonju Si 54896 Jeonrabug Do South Korea Sunway Univ Sch Engn & Technol Selangor 47500 Malaysia
Three-dimensional (3d) object classification is crucial in various applications, including autonomous driving, robotics, and augmented reality, where precise detection of objects in 3d space is required. Traditional t... 详细信息
来源: 评论
L3dOC: Lifelong 3d object classification
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2021年 30卷 7486-7498页
作者: Liu, Yuyang Cong, Yang Sun, Gan Zhang, Tao dong, Jiahua Liu, Hongsen Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Shenyang 110016 Peoples R China Chinese Acad Sci Inst Robot Shenyang 110169 Peoples R China Chinese Acad Sci Inst Intelligent Mfg Shenyang 110169 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China JD Com Inc Beijing 100176 Peoples R China
3d object classification has been widely applied in both academic and industrial scenarios. However, most state-of-the-art algorithms rely on a fixed object classification task set, which cannot tackle the scenario wh... 详细信息
来源: 评论
Hierarchical multi-view context modelling for 3d object classification and retrieval
收藏 引用
INFORMATION SCIENCES 2021年 547卷 984-995页
作者: Liu, An-An Zhou, Heyu Nie, Weizhi Liu, Zhenguang Liu, Wu Xie, Hongtao Mao, Zhendong Li, Xuanya Song, dan Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Zhejiang Gongshang Univ Hangzhou 310018 Peoples R China AI Res JD Beijing 100105 Peoples R China Univ Sci & Technol China Sch Informat Sci & Technol Hefei 230026 Peoples R China Baidu Inc Beijing 100105 Peoples R China
Recent advances in 3d sensors and 3d modelling software have led to big 3d data. 3d object classification and retrieval are becoming important but challenging tasks. One critical problem for them is how to learn the d... 详细信息
来源: 评论
Hypergraph wavelet neural networks for 3d object classification
收藏 引用
NEUROCOMPUTING 2021年 463卷 580-595页
作者: Nong, Liping Wang, Junyi Lin, Jiming Qiu, Hongbing Zheng, Lin Zhang, Wenhui Xidian Univ Sch Telecommun Engn Xian 710071 Peoples R China Guangxi Normal Univ Coll Phys & Technol Guilin 541004 Peoples R China Guilin Univ Elect Technol Sch Informat & Commun Guilin 541004 Peoples R China Guilin Univ Elect Technol Sch Comp Sci & Informat Secur Guilin 541004 Peoples R China
Recently, hypergraph learning has shown great potential in a variety of classification tasks. However, existing hypergraph neural networks lack flexibility in modeling and extracting high-order relationships among dat... 详细信息
来源: 评论
Pointwise CNN for 3d object classification on Point Cloud
收藏 引用
JOURNAL OF INFORMATION PROCESSING SYSTEMS 2021年 第4期17卷 787-800页
作者: Song, Wei Liu, Zishu Tian, Yifei Fong, Simon North China Univ Technol Sch Informat Sci & Technol Beijing Peoples R China Univ Macau Dept Comp & Informat Sci Macau Peoples R China
Three-dimensional (3d) object classification tasks using point clouds are widely used in 3d modeling, face recognition, and robotic missions. However, processing raw point clouds directly is problematic for a traditio... 详细信息
来源: 评论