咨询与建议

限定检索结果

文献类型

  • 40 篇 期刊文献
  • 24 篇 会议

馆藏范围

  • 64 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 64 篇 工学
    • 52 篇 计算机科学与技术...
    • 31 篇 电气工程
    • 16 篇 软件工程
    • 11 篇 信息与通信工程
    • 4 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 2 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 网络空间安全
  • 9 篇 理学
    • 4 篇 物理学
    • 3 篇 地球物理学
    • 2 篇 生物学
    • 1 篇 化学
  • 6 篇 医学
    • 6 篇 临床医学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 64 篇 3d object classi...
  • 11 篇 deep learning
  • 11 篇 3d object retrie...
  • 8 篇 point cloud
  • 6 篇 three-dimensiona...
  • 5 篇 feature extracti...
  • 5 篇 solid modeling
  • 5 篇 3d object recogn...
  • 4 篇 multi-view
  • 4 篇 convolutional ne...
  • 3 篇 computational mo...
  • 3 篇 visualization
  • 3 篇 shape
  • 3 篇 point cloud comp...
  • 3 篇 convolutional ne...
  • 3 篇 gan
  • 2 篇 noisy conditions
  • 2 篇 volumetric part
  • 2 篇 similarity measu...
  • 2 篇 multi-hypergraph...

机构

  • 4 篇 tianjin univ sch...
  • 3 篇 univ waterloo de...
  • 3 篇 north china univ...
  • 2 篇 sidi mohamed ben...
  • 2 篇 xidian univ sch ...
  • 2 篇 kfupm ctr intell...
  • 2 篇 kfupm dept infor...
  • 2 篇 jouf univ coll c...
  • 2 篇 fuzhou univ coll...
  • 2 篇 guilin univ elec...
  • 2 篇 shanghai univ sc...
  • 2 篇 xiamen univ sch ...
  • 2 篇 chinese acad sci...
  • 2 篇 mohammed v univ ...
  • 2 篇 kfupm sdaia kfup...
  • 2 篇 univ washington ...
  • 2 篇 univ sidi mohame...
  • 2 篇 guangxi normal u...
  • 2 篇 univ hosp fez de...
  • 2 篇 sidi mohamed ben...

作者

  • 4 篇 liu an-an
  • 4 篇 qjidaa hassan
  • 3 篇 wang cheng
  • 3 篇 li jonathan
  • 3 篇 song wei
  • 3 篇 sohel ferdous
  • 2 篇 mesbah abderrahi...
  • 2 篇 zhang lingfeng
  • 2 篇 ning xin
  • 2 篇 song dan
  • 2 篇 gao yue
  • 2 篇 wang junyi
  • 2 篇 usman muhammad
  • 2 篇 lin jiming
  • 2 篇 zhang wenhui
  • 2 篇 zhou he-yu
  • 2 篇 atmosukarto indr...
  • 2 篇 tian yifei
  • 2 篇 berrahou aissam
  • 2 篇 helmy tarek

语言

  • 62 篇 英文
  • 1 篇 土耳其文
  • 1 篇 其他
检索条件"主题词=3D Object Classification"
64 条 记 录,以下是41-50 订阅
排序:
1.2 Watt classification of 3d Voxel Based Point-clouds using a CNN on a Neural Compute Stick
收藏 引用
NEUROCOMPUTING 2020年 393卷 165-174页
作者: Xu, Xiaofan Caulfield, Sam Amaro, Joao Falcao, Gabriel Moloney, david Intel Ireland Ltd Movidius Div Leixlip Kildare Ireland Univ Coimbra Inst Telecomunicacoes Dept Elect & Comp Engn Coimbra Portugal
With the recent surge in popularity of Convolutional Neural Networks (CNNs), motivated by their significant performance in many classification and related tasks, a new challenge now needs to be addressed: how to accom... 详细信息
来源: 评论
Robust classification of 3d objects using discrete orthogonal moments and deep neural networks
收藏 引用
MULTIMEdIA TOOLS ANd APPLICATIONS 2020年 第27-28期79卷 18883-18907页
作者: Lakhili, Zouhir El Alami, Abdelmajid Mesbah, Abderrahim Berrahou, Aissam Qjidaa, Hassan Sidi Mohamed Ben Abdellah Univ CED ST Ctr Doctoral Studies Sci & Technol LESSI Lab Fac Sci Dhar el Mahraz Fes Morocco Sidi Mohamed Ben Abdellah Univ Dept Phys Fes Morocco Mohammed V Univ Rabat Morocco
In this paper, we propose a new model based on 3d discrete orthogonal moments and deep neural networks (dNN) to improve the classification accuracy of 3d objects under geometric transformations and noise. However, the... 详细信息
来源: 评论
WGNet: Wider graph convolution networks for 3d point cloud classification with local dilated connecting and context-aware
收藏 引用
INTERNATIONAL JOURNAL OF APPLIEd EARTH OBSERVATION ANd GEOINFORMATION 2022年 110卷
作者: Chen, Yiping Luo, Zhipeng Li, Wen Lin, Haojia Nurunnabi, Abdul Lin, Yaojin Wang, Cheng Zhang, Xiao-Ping Li, Jonathan Sun Yat sen Univ Sch Geospatial Engn & Sci Zhuhai 519082 Peoples R China Xiamen Univ Sch Informat Fujian Key Lab Sensing & Comp Smart Cities Xiamen Peoples R China Univ Luxembourg Inst Civil & Environm Engn Dept Geodesy & Geospatial Engn Esch Sur Alzette Luxembourg Minnan Normal Univ Sch Comp Sci & Engn Zhangzhou Peoples R China Ryerson Univ Dept Elect Comp & Biomed Engn Toronto ON Canada Univ Waterloo Dept Geog & Environm Management Waterloo ON Canada Univ Waterloo Dept Syst Design Engn Waterloo ON Canada
Graph convolution networks (GCNs) have been proven powerful in describing unstructured data. Currently, most of existing GCNs aim on more accuracy by constructing deeper models. However, these methods show limited ben... 详细信息
来源: 评论
SVP-Classifier: Single-View Point Cloud data Classifier with Multi-view Hallucination  21st
SVP-Classifier: Single-View Point Cloud Data Classifier with...
收藏 引用
21st International Conference on Image Analysis and Processing (ICIAP)
作者: Mohammadi, Seyed Saber Wang, Yiming Taiana, Matteo Morerio, Pietro del Bue, Alessio Univ Genoa Dept Marine Elect Elect & Telecommun Engn Genoa Italy Italian Inst Technol Pattern Anal & Comp Vis PAVIS Genoa Italy Fdn Bruno Kessler Deep Visual Learning DVL Trento Italy
We address single-view 3d shape classification with partial Point Cloud data (PCd) inputs. Conventional PCd classifiers achieve the best performance when trained and evaluated with complete 3d object scans. However, t... 详细信息
来源: 评论
object classification IN POINT CLOUd VIA CONdITIONAL AdVERSARIAL dOMAIN AdAPTATION FOR FOREST INVENTORY
OBJECT CLASSIFICATION IN POINT CLOUD VIA CONDITIONAL ADVERSA...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Li, Lingkai Luo, Huan Fan, Wenhui Wang, Cheng Guo, Wenzhong Li, Jonathan Fuzhou Univ Coll Comp & Data Sci Fuzhou Peoples R China Xiamen Univ Sch Informat Fujian Key Lab Sensing & Comp Smart City Xiamen Peoples R China Univ Waterloo Dept Geog & Environm Management Waterloo ON Canada
Recently, laser scanning system is widely used to accurately predict forest inventory attributes. In this work, we propose an efficient framework including Feature Extractor Module and Conditional Adversarial Module f... 详细信息
来源: 评论
Spherical Transformer: Adapting Spherical Signal to Convolutional Networks  5th
Spherical Transformer: Adapting Spherical Signal to Convolut...
收藏 引用
5th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Liu, Yuqi Wang, Yin du, Haikuan Cai, Shen Tongji Univ Sch Elect & Informat Engn Shanghai Peoples R China Donghua Univ Visual & Geometr Percept Lab Shanghai Peoples R China
Convolutional neural networks (CNNs) have been widely used in various vision tasks, e.g. image classification, semantic segmentation, etc. Unfortunately, standard 2d CNNs are not well suited for spherical signals such... 详细信息
来源: 评论
Review of multi-view 3d object recognition methods based on deep learning
收藏 引用
dISPLAYS 2021年 69卷 102053-102053页
作者: Qi, Shaohua Ning, Xin Yang, Guowei Zhang, Liping Long, Peng Cai, Weiwei Li, Weijun Chinese Acad Sci Inst Semicond Beijing 100083 Peoples R China Qingdao Univ Coll Elect Informat Qingdao 266071 Peoples R China Wave Grp Cognit Comp Technol Joint Lab Beijing 102208 Peoples R China Cent South Univ Forestry & Technol Sch Logist & Transportat Changsha 410004 Peoples R China Univ Chinese Acad Sci Ctr Mat Sci & Optoelect Engn Beijing 100049 Peoples R China Univ Chinese Acad Sci Sch Microelect Beijing 100049 Peoples R China
Three-dimensional (3d) object recognition is widely used in automated driving, medical image analysis, virtual/ augmented reality, artificial intelligence robots, and other areas. deep learning is increasingly being u... 详细信息
来源: 评论
Multi-Class classification and Multi-Output Regression of Three-dimensional objects Using Artificial Intelligence Applied to digital Holographic Information
收藏 引用
SENSORS 2023年 第3期23卷 1095-1095页
作者: Mahesh, R. N. Uma Nelleri, Anith Vellore Inst Technol VIT Sch Elect Engn Chennai 600127 Tamilnadu India
digital holographically sensed 3d data processing, which is useful for AI-based vision, is demonstrated. Three prominent methods of learning from datasets such as sensed holograms, computationally retrieved intensity ... 详细信息
来源: 评论
Weight-Edge Convolution Neural Network for Point Clouds Learning
收藏 引用
Wuhan University Journal of Natural Sciences 2021年 第2期26卷 137-146页
作者: QIU Xiong ZHANG Juan ZHU Wumingrui ZHANG Shuqi KONG Lihong College of Electronic and Electrical Engineering Shanghai University of Engineering ScienceShanghai 201620China
As a kind of flexible three-dimensional geometric data, point clouds can accomplish many challenging tasks so long as the rich information in the geometric topology architecture can be deeply analyzed. On account of t... 详细信息
来源: 评论
RESIdUAL ENHANCEd MULTI-HYPERGRAPH NEURAL NETWORK
RESIDUAL ENHANCED MULTI-HYPERGRAPH NEURAL NETWORK
收藏 引用
IEEE International Conference on Image Processing (ICIP)
作者: Huang, Jing Huang, Xiaolin Yang, Jie Shanghai Jiao Tong Univ Dept Automat Shanghai Peoples R China
Hypergraphs are a generalized data structure of graphs to model higher-order correlations among entities, which have been successfully adopted into various researching fields. Meanwhile, HyperGraph Neural Network (HGN... 详细信息
来源: 评论