咨询与建议

限定检索结果

文献类型

  • 567 篇 期刊文献
  • 342 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 887 篇 工学
    • 558 篇 计算机科学与技术...
    • 454 篇 电气工程
    • 122 篇 控制科学与工程
    • 116 篇 交通运输工程
    • 99 篇 软件工程
    • 92 篇 信息与通信工程
    • 86 篇 仪器科学与技术
    • 59 篇 土木工程
    • 38 篇 测绘科学与技术
    • 36 篇 电子科学与技术(可...
    • 35 篇 机械工程
    • 21 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 8 篇 材料科学与工程(可...
    • 8 篇 航空宇航科学与技...
    • 4 篇 化学工程与技术
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 生物医学工程(可授...
  • 153 篇 理学
    • 69 篇 化学
    • 61 篇 生物学
    • 57 篇 物理学
    • 26 篇 地球物理学
    • 5 篇 数学
    • 3 篇 地理学
  • 104 篇 医学
    • 101 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 43 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 2 篇 农学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 917 篇 3d object detect...
  • 231 篇 autonomous drivi...
  • 140 篇 point cloud
  • 127 篇 three-dimensiona...
  • 125 篇 object detection
  • 118 篇 deep learning
  • 109 篇 feature extracti...
  • 104 篇 lidar
  • 90 篇 point cloud comp...
  • 66 篇 laser radar
  • 58 篇 point clouds
  • 48 篇 transformer
  • 48 篇 autonomous vehic...
  • 46 篇 detectors
  • 34 篇 cameras
  • 31 篇 multi-modal fusi...
  • 29 篇 proposals
  • 29 篇 attention mechan...
  • 28 篇 sensor fusion
  • 25 篇 semantics

机构

  • 15 篇 univ chinese aca...
  • 10 篇 univ sci & techn...
  • 9 篇 chinese acad sci...
  • 9 篇 huazhong univ sc...
  • 8 篇 shanghai ai lab ...
  • 7 篇 tsinghua univ de...
  • 7 篇 tsinghua univ sc...
  • 7 篇 chinese univ hon...
  • 7 篇 univ sci & techn...
  • 7 篇 xi an jiao tong ...
  • 7 篇 harbin inst tech...
  • 7 篇 tech univ munich...
  • 7 篇 chinese acad sci...
  • 6 篇 baidu inc people...
  • 6 篇 chinese acad sci...
  • 6 篇 chinese acad sci...
  • 6 篇 tsinghua univ st...
  • 6 篇 changchun univ s...
  • 6 篇 tsinghua univ pe...
  • 5 篇 nanjing univ pos...

作者

  • 10 篇 li jun
  • 9 篇 wang li
  • 9 篇 ma huimin
  • 8 篇 tao chongben
  • 8 篇 zhao huaici
  • 7 篇 lu ke
  • 7 篇 arens michael
  • 7 篇 hammer marcus
  • 7 篇 hebel marcus
  • 7 篇 wang ke
  • 7 篇 zhang guoxin
  • 7 篇 song ziying
  • 7 篇 zhang yong
  • 6 篇 zheng nanning
  • 6 篇 ye xiaoqing
  • 6 篇 ma jie
  • 6 篇 liu haizhuang
  • 6 篇 wang peng
  • 6 篇 li ruifeng
  • 6 篇 zhang xinyu

语言

  • 899 篇 英文
  • 13 篇 其他
  • 3 篇 中文
  • 1 篇 朝鲜文
检索条件"主题词=3D Object Detection"
917 条 记 录,以下是101-110 订阅
排序:
Cross-domain Generalization for LidAR-Based 3d object detection in Infrastructure and Vehicle Environments
收藏 引用
SENSORS 2025年 第3期25卷 767-767页
作者: Zhi, Peng Jiang, Longhao Yang, Xiao Wang, Xingzheng Li, Hung-Wei Zhou, Qingguo Li, Kuan-Ching Ivanovic, Mirjana Lanzhou Univ Sch Informat Sci & Engn Lanzhou 730000 Peoples R China Providence Univ Dept Comp Sci & Informat Engn Taichung 43301 Taiwan Univ Novi Sad Fac Sci Novi Sad 21000 Serbia
In the intelligent transportation field, the Internet of Things (IoT) is commonly applied using 3d object detection as a crucial part of Vehicle-to-Everything (V2X) cooperative perception. However, challenges arise fr... 详细信息
来源: 评论
SOFW: A Synergistic Optimization Framework for Indoor 3d object detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEdIA 2025年 27卷 637-651页
作者: dai, Kun Jiang, Zhiqiang Xie, Tao Wang, Ke Liu, dedong Fan, Zhendong Li, Ruifeng Zhao, Lijun Omar, Mohamed Harbin Inst Technol State Key Lab Robot & Syst Harbin 150006 Peoples R China State Key Yangtze River Delta HIT Robot Technol Re Wuhu 241000 Peoples R China
In this work, we observe that indoor 3d object detection across varied scene domains encompasses both universal attributes and specific features. Based on this insight, we propose SOFW, a synergistic optimization fram... 详细信息
来源: 评论
MdFusion: Multi-dimension Semantic-Spatial Feature Fusion for LidAR-Camera 3d object detection
收藏 引用
REMOTE SENSING 2025年 第7期17卷 1240-1240页
作者: Qiao, Renzhong Yuan, Hao Guan, Zhenbo Zhang, Wenbo Xidian Univ Sch Elect Engn Xian 710071 Peoples R China CETC 54th Res Inst Shijiazhuang 050081 Peoples R China Hebei Key Lab Intelligent Informat Percept & Proc Shijiazhuang 050081 Peoples R China
Accurate 3d object detection is becoming increasingly vital for the development of robust perception systems, particularly in applications such as autonomous driving vehicles and robotic systems. Many existing approac... 详细信息
来源: 评论
Practical Collaborative Perception: A Framework for Asynchronous and Multi-Agent 3d object detection
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第9期25卷 12163-12175页
作者: dao, Minh-Quan Berrio, Julie Stephany Fremont, Vincent Shan, Mao Hery, Elwan Worrall, Stewart Ecole Cent Nantes F-44300 Nantes France Univ Sydney Australian Ctr Robot ACFR Sydney NSW 2008 Australia
Occlusion is a major challenge for LidAR-based object detection methods as it renders regions of interest unobservable to the ego vehicle. A proposed solution to this problem comes from collaborative perception via Ve... 详细信息
来源: 评论
WS-SSd: Achieving faster 3d object detection for autonomous driving via weighted point cloud sampling
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 第PartC期249卷
作者: Li, Xusheng Wang, Chengliang Zeng, Zhuo Chongqing Univ Coll Comp Sci Chongqing Peoples R China
due to the limited computational resources of the onboard computing devices of autonomous vehicles, the development of lightweight 3d object detectors is essential. Point-based detectors that progressively sample raw ... 详细信息
来源: 评论
Hardness-Aware Scene Synthesis for Semi-Supervised 3d object detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEdIA 2024年 26卷 9644-9656页
作者: Zeng, Shuai Zheng, Wenzhao Lu, Jiwen Yan, Haibin Beijing Univ Posts & Telecommun Sch Automat Beijing 100876 Peoples R China Tsinghua Univ Dept Automat Beijing 100084 Peoples R China
3d object detection aims to recover the 3d information of concerning objects and serves as the fundamental task of autonomous driving perception. Its performance greatly depends on the scale of labeled training data, ... 详细信息
来源: 评论
SP-det: Leveraging Saliency Prediction for Voxel-Based 3d object detection in Sparse Point Cloud
收藏 引用
IEEE TRANSACTIONS ON MULTIMEdIA 2024年 26卷 2795-2808页
作者: An, Pei duan, Yucong Huang, Yuliang Ma, Jie Chen, Yanfei Wang, Liheng Yang, You Liu, Qiong Wuhan Inst Technol Sch Elect & Informat Engn Wuhan 430205 Peoples R China Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Wuhan 430074 Peoples R China Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan 430074 Peoples R China Wuhan Natl Lab Optoelect Wuhan 430074 Peoples R China
Voxel is one of the common structural representation of 3d point cloud. due to the sparsity of point cloud generated by light detection and ranging (LidAR), there is the extreme imbalance in the foreground and backgro... 详细信息
来源: 评论
MonoMPV: Monocular 3d object detection With Multiple Projection Views on Edge devices
收藏 引用
IEEE ACCESS 2024年 12卷 136599-136612页
作者: deng, Zhaoxue Hao, Bingsen Liu, Guofang Li, Xingquan Wei, Hanbing Huang, Fei Liu, Shengshu Chongqing Jiaotong Univ Sch Mechatron & Vehicle Engn Chongqing 400074 Peoples R China Chongqing Changan Automobile Co Ltd Res & Dev Dept Chongqing 400023 Peoples R China China Soc Automot Engineers Beijing 100176 Peoples R China Chongqing Univ Technol Vehicle Engn Inst Chongqing 400054 Peoples R China China Rd & Bridge Corp Beijing 100010 Peoples R China
In the field of autonomous driving, monocular 3d object detection is focused on the task of representing 3d scenes using a single camera image and conducting 3d object detection. While Bird's-Eye View (BEV) method... 详细信息
来源: 评论
HRNet: 3d object detection network for point cloud with hierarchical refinement
收藏 引用
PATTERN RECOGNITION 2024年 149卷
作者: Lu, Bin Sun, Yang Yang, Zhenyu Song, Ran Jiang, Haiyan Liu, Yonghuai North China Elect Power Univ Dept Comp Baoding 071003 Hebei Peoples R China Shandong Univ Sch Control Sci & Engn Jinan 250100 Shandong Peoples R China Nanjing Agr Univ Coll Artificial Intelligence Nanjing 210095 Jiangsu Peoples R China Edge Hill Univ St Helens Rd Ormskirk L39 4QP Lancs England
Recently, 3d object detection from LidAR point clouds has advanced rapidly. Although the second stage can improve the detection performance significantly, prior works concern little about the essential differences amo... 详细信息
来源: 评论
SRFdet3d: Sparse Region Fusion based 3d object detection
收藏 引用
NEUROCOMPUTING 2024年 593卷
作者: Erabati, Gopi Krishna Araujo, Helder Univ Coimbra Inst Syst & Robot Rua Silvio Lima Polo 2 P-3030290 Coimbra Portugal
Unlike the earlier 3d object detection approaches that formulate hand-crafted dense (in thousands) object proposals by leveraging anchors on dense feature maps, we formulate np (in hundreds) number of learnable sparse... 详细信息
来源: 评论