咨询与建议

限定检索结果

文献类型

  • 567 篇 期刊文献
  • 342 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 887 篇 工学
    • 558 篇 计算机科学与技术...
    • 454 篇 电气工程
    • 122 篇 控制科学与工程
    • 116 篇 交通运输工程
    • 99 篇 软件工程
    • 92 篇 信息与通信工程
    • 86 篇 仪器科学与技术
    • 59 篇 土木工程
    • 38 篇 测绘科学与技术
    • 36 篇 电子科学与技术(可...
    • 35 篇 机械工程
    • 21 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 8 篇 材料科学与工程(可...
    • 8 篇 航空宇航科学与技...
    • 4 篇 化学工程与技术
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 生物医学工程(可授...
  • 153 篇 理学
    • 69 篇 化学
    • 61 篇 生物学
    • 57 篇 物理学
    • 26 篇 地球物理学
    • 5 篇 数学
    • 3 篇 地理学
  • 104 篇 医学
    • 101 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 43 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 2 篇 农学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 917 篇 3d object detect...
  • 231 篇 autonomous drivi...
  • 140 篇 point cloud
  • 127 篇 three-dimensiona...
  • 125 篇 object detection
  • 118 篇 deep learning
  • 109 篇 feature extracti...
  • 104 篇 lidar
  • 90 篇 point cloud comp...
  • 66 篇 laser radar
  • 58 篇 point clouds
  • 48 篇 transformer
  • 48 篇 autonomous vehic...
  • 46 篇 detectors
  • 34 篇 cameras
  • 31 篇 multi-modal fusi...
  • 29 篇 proposals
  • 29 篇 attention mechan...
  • 28 篇 sensor fusion
  • 25 篇 semantics

机构

  • 15 篇 univ chinese aca...
  • 10 篇 univ sci & techn...
  • 9 篇 chinese acad sci...
  • 9 篇 huazhong univ sc...
  • 8 篇 shanghai ai lab ...
  • 7 篇 tsinghua univ de...
  • 7 篇 tsinghua univ sc...
  • 7 篇 chinese univ hon...
  • 7 篇 univ sci & techn...
  • 7 篇 xi an jiao tong ...
  • 7 篇 harbin inst tech...
  • 7 篇 tech univ munich...
  • 7 篇 chinese acad sci...
  • 6 篇 baidu inc people...
  • 6 篇 chinese acad sci...
  • 6 篇 chinese acad sci...
  • 6 篇 tsinghua univ st...
  • 6 篇 changchun univ s...
  • 6 篇 tsinghua univ pe...
  • 5 篇 nanjing univ pos...

作者

  • 10 篇 li jun
  • 9 篇 wang li
  • 9 篇 ma huimin
  • 8 篇 tao chongben
  • 8 篇 zhao huaici
  • 7 篇 lu ke
  • 7 篇 arens michael
  • 7 篇 hammer marcus
  • 7 篇 hebel marcus
  • 7 篇 wang ke
  • 7 篇 zhang guoxin
  • 7 篇 song ziying
  • 7 篇 zhang yong
  • 6 篇 zheng nanning
  • 6 篇 ye xiaoqing
  • 6 篇 ma jie
  • 6 篇 liu haizhuang
  • 6 篇 wang peng
  • 6 篇 li ruifeng
  • 6 篇 zhang xinyu

语言

  • 898 篇 英文
  • 13 篇 其他
  • 3 篇 中文
  • 1 篇 朝鲜文
检索条件"主题词=3D Object Detection"
917 条 记 录,以下是111-120 订阅
排序:
MonoMPV: Monocular 3d object detection With Multiple Projection Views on Edge devices
收藏 引用
IEEE ACCESS 2024年 12卷 136599-136612页
作者: deng, Zhaoxue Hao, Bingsen Liu, Guofang Li, Xingquan Wei, Hanbing Huang, Fei Liu, Shengshu Chongqing Jiaotong Univ Sch Mechatron & Vehicle Engn Chongqing 400074 Peoples R China Chongqing Changan Automobile Co Ltd Res & Dev Dept Chongqing 400023 Peoples R China China Soc Automot Engineers Beijing 100176 Peoples R China Chongqing Univ Technol Vehicle Engn Inst Chongqing 400054 Peoples R China China Rd & Bridge Corp Beijing 100010 Peoples R China
In the field of autonomous driving, monocular 3d object detection is focused on the task of representing 3d scenes using a single camera image and conducting 3d object detection. While Bird's-Eye View (BEV) method... 详细信息
来源: 评论
HRNet: 3d object detection network for point cloud with hierarchical refinement
收藏 引用
PATTERN RECOGNITION 2024年 149卷
作者: Lu, Bin Sun, Yang Yang, Zhenyu Song, Ran Jiang, Haiyan Liu, Yonghuai North China Elect Power Univ Dept Comp Baoding 071003 Hebei Peoples R China Shandong Univ Sch Control Sci & Engn Jinan 250100 Shandong Peoples R China Nanjing Agr Univ Coll Artificial Intelligence Nanjing 210095 Jiangsu Peoples R China Edge Hill Univ St Helens Rd Ormskirk L39 4QP Lancs England
Recently, 3d object detection from LidAR point clouds has advanced rapidly. Although the second stage can improve the detection performance significantly, prior works concern little about the essential differences amo... 详细信息
来源: 评论
SRFdet3d: Sparse Region Fusion based 3d object detection
收藏 引用
NEUROCOMPUTING 2024年 593卷
作者: Erabati, Gopi Krishna Araujo, Helder Univ Coimbra Inst Syst & Robot Rua Silvio Lima Polo 2 P-3030290 Coimbra Portugal
Unlike the earlier 3d object detection approaches that formulate hand-crafted dense (in thousands) object proposals by leveraging anchors on dense feature maps, we formulate np (in hundreds) number of learnable sparse... 详细信息
来源: 评论
Selective Transfer Learning of Cross-Modality distillation for Monocular 3d object detection
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS ANd SYSTEMS FOR VIdEO TECHNOLOGY 2024年 第10期34卷 9925-9938页
作者: ding, Rui Yang, Meng Zheng, Nanning Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Peoples R China
Monocular 3d object detection is a promising yet ill-posed task for autonomous vehicles due to the lack of accurate depth information. Cross-modality knowledge distillation could effectively transfer depth information... 详细信息
来源: 评论
Survey and systematization of 3d object detection models and methods
收藏 引用
VISUAL COMPUTER 2024年 第3期40卷 1867-1913页
作者: drobnitzky, Moritz Friederich, Jonas Egger, Bernhard Zschech, Patrick Tech Univ Dresden Munchner Pl 3 D-01187 Dresden Germany Univ Southern Denmark Maersk McKinney Moller Inst Campusvej 55 DK-5230 Odense Denmark Friedrich Alexander Univ Erlangen Nurnberg Schlosspl 4 D-91054 Erlangen Germany
Strong demand for autonomous vehicles and the wide availability of 3d sensors are continuously fueling the proposal of novel methods for 3d object detection. In this paper, we provide a comprehensive survey of recent ... 详细信息
来源: 评论
MMFG: Multimodal-based Mutual Feature Gating 3d object detection
收藏 引用
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS 2024年 第2期110卷 85-85页
作者: Xu, Wanpeng Fu, Zhipeng Peng Cheng Lab Dept New Pattern Network Xingke 1st St Shenzhen 518055 Guangdong Peoples R China
To address the problem that image and point cloud features are fused in a coarse fusion way and cannot achieve deep fusion, this paper proposes a multimodal 3d object detection architecture based on a mutual feature g... 详细信息
来源: 评论
Scalable 3d object detection Pipeline With Center-Based Sequential Feature Aggregation for Intelligent Vehicles
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 2024年 第1期9卷 1512-1523页
作者: Jiang, Qi Hu, Chuan Zhao, Baixuan Huang, Yonghui Zhang, Xi Shanghai Jiao Tong Univ Sch Mech Engn Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ Intelligent Vehicle Inst Sch Mech Engn Shanghai 200240 Peoples R China
3d object detection plays a key role in the perception system of intelligent vehicles. The reliable 3d structural information provided by LidAR points enables the accurate regression of position and pose, while the se... 详细信息
来源: 评论
LXL: LidAR Excluded Lean 3d object detection With 4d Imaging Radar and Camera Fusion
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 2024年 第1期9卷 79-92页
作者: Xiong, Weiyi Liu, Jianan Huang, Tao Han, Qing-Long Xia, Yuxuan Zhu, Bing Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China Vitalent Consulting S-41761 Gothenburg Sweden James Cook Univ Coll Sci & Engn Cairns Qld 4878 Australia Swinburne Univ Technol Sch Sci Comp & Engn Technol Melbourne Vic 3122 Australia Chalmers Univ Technol Dept Elect Engn S-41296 Gothenburg Sweden
As an emerging technology and a relatively affordable device, the 4d imaging radar has already been confirmed effective in performing 3d object detection in autonomous driving. Nevertheless, the sparsity and noisiness... 详细信息
来源: 评论
deployFusion: A deployable Monocular 3d object detection with Multi-Sensor Information Fusion in BEV for Edge devices
收藏 引用
SENSORS 2024年 第21期24卷 7007页
作者: Huang, Fei Liu, Shengshu Zhang, Guangqian Hao, Bingsen Xiang, Yangkai Yuan, Kun China Rd & Bridge Corp Beijing 100010 Peoples R China Chongqing Seres Phoenix Intelligent Innovat Techno Chongqing 400039 Peoples R China Chongqing Jiaotong Univ Sch Mechatron & Vehicle Engn Chongqing 400074 Peoples R China
To address the challenges of suboptimal remote detection and significant computational burden in existing multi-sensor information fusion 3d object detection methods, a novel approach based on Bird's-Eye View (BEV... 详细信息
来源: 评论
LidAR-Camera Fusion in Perspective View for 3d object detection in Surface Mine
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 2024年 第2期9卷 3721-3730页
作者: Ai, Yunfeng Yang, Xue Song, Ruiqi Cui, Chenglin Li, Xinqing Cheng, Qi Tian, Bin Chen, Long Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China Waytous Inc Qingdao 266109 Peoples R China Chinese Acad Sci Inst Automat State Key Lab Multimodal Artificial Intelligence S Beijing 100190 Peoples R China Tongji Univ Coll Surveying & Geoinformat Shanghai 200092 Peoples R China China Univ Min & Technol Sch Mech & Elect Engn Beijing 100083 Peoples R China China Univ Min & Technol Inner Mongolia Res Inst Ordos 017000 Peoples R China
LidAR-Camera fusion can effectively provide the complementary geometric and appearance information for 3d object detection task of autonomous driving system. However, current dominant methods designed for urban scenes... 详细信息
来源: 评论