咨询与建议

限定检索结果

文献类型

  • 567 篇 期刊文献
  • 342 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 887 篇 工学
    • 558 篇 计算机科学与技术...
    • 454 篇 电气工程
    • 122 篇 控制科学与工程
    • 116 篇 交通运输工程
    • 99 篇 软件工程
    • 92 篇 信息与通信工程
    • 86 篇 仪器科学与技术
    • 59 篇 土木工程
    • 38 篇 测绘科学与技术
    • 36 篇 电子科学与技术(可...
    • 35 篇 机械工程
    • 21 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 8 篇 材料科学与工程(可...
    • 8 篇 航空宇航科学与技...
    • 4 篇 化学工程与技术
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 生物医学工程(可授...
  • 153 篇 理学
    • 69 篇 化学
    • 61 篇 生物学
    • 57 篇 物理学
    • 26 篇 地球物理学
    • 5 篇 数学
    • 3 篇 地理学
  • 104 篇 医学
    • 101 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 43 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 2 篇 农学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 917 篇 3d object detect...
  • 231 篇 autonomous drivi...
  • 140 篇 point cloud
  • 127 篇 three-dimensiona...
  • 125 篇 object detection
  • 118 篇 deep learning
  • 109 篇 feature extracti...
  • 104 篇 lidar
  • 90 篇 point cloud comp...
  • 66 篇 laser radar
  • 58 篇 point clouds
  • 48 篇 transformer
  • 48 篇 autonomous vehic...
  • 46 篇 detectors
  • 34 篇 cameras
  • 31 篇 multi-modal fusi...
  • 29 篇 proposals
  • 29 篇 attention mechan...
  • 28 篇 sensor fusion
  • 25 篇 semantics

机构

  • 15 篇 univ chinese aca...
  • 10 篇 univ sci & techn...
  • 9 篇 chinese acad sci...
  • 9 篇 huazhong univ sc...
  • 8 篇 shanghai ai lab ...
  • 7 篇 tsinghua univ de...
  • 7 篇 tsinghua univ sc...
  • 7 篇 chinese univ hon...
  • 7 篇 univ sci & techn...
  • 7 篇 xi an jiao tong ...
  • 7 篇 harbin inst tech...
  • 7 篇 tech univ munich...
  • 7 篇 chinese acad sci...
  • 6 篇 baidu inc people...
  • 6 篇 chinese acad sci...
  • 6 篇 chinese acad sci...
  • 6 篇 tsinghua univ st...
  • 6 篇 changchun univ s...
  • 6 篇 tsinghua univ pe...
  • 5 篇 nanjing univ pos...

作者

  • 10 篇 li jun
  • 9 篇 wang li
  • 9 篇 ma huimin
  • 8 篇 tao chongben
  • 8 篇 zhao huaici
  • 7 篇 lu ke
  • 7 篇 arens michael
  • 7 篇 hammer marcus
  • 7 篇 hebel marcus
  • 7 篇 wang ke
  • 7 篇 zhang guoxin
  • 7 篇 song ziying
  • 7 篇 zhang yong
  • 6 篇 zheng nanning
  • 6 篇 ye xiaoqing
  • 6 篇 ma jie
  • 6 篇 liu haizhuang
  • 6 篇 wang peng
  • 6 篇 li ruifeng
  • 6 篇 zhang xinyu

语言

  • 899 篇 英文
  • 13 篇 其他
  • 3 篇 中文
  • 1 篇 朝鲜文
检索条件"主题词=3D Object Detection"
917 条 记 录,以下是121-130 订阅
排序:
Alternating interaction fusion of Image-Point cloud for Multi-Modal 3d object detection
收藏 引用
AdVANCEd ENGINEERING INFORMATICS 2025年 65卷
作者: Li, Guofa Lu, Haifeng Li, Jie Li, Zhenning Li, Qingkun Ren, Xiangyun Zheng, Ling Chongqing Univ Coll Mech & Vehicle Engn Chongqing 400044 Peoples R China Shenzhen Univ Inst Human Factors & Ergon Coll Mechatron & Control Engn Shenzhen 518060 Peoples R China Univ Macau State Key Lab Internet Things Smart City Macau 999078 Peoples R China Chinese Acad Sci Inst Software Beijing Key Lab Human Comp Interact Beijing 100190 Peoples R China Chongqing Changan Automobile Co Ltd State Key Lab Intelligent Vehicle Safety Technol Chongqing 400023 Peoples R China
A mainstream feature fusion method involves enhancing Lidar point cloud information by incorporating camera, but it fails to fully utilize the rich information in images. Another method uses a dual-channel parallel ap... 详细信息
来源: 评论
PFENet: Towards precise feature extraction from sparse point cloud for 3d object detection
收藏 引用
NEURAL NETWORKS 2025年 185卷 107144页
作者: Li, Yaochen Li, Qiao Gao, Cong Gao, Shengjing Wu, Hao Liu, Rui Xi An Jiao Tong Univ Sch Software Engn Xian 710049 Peoples R China
Accurate 3d point cloud object detection is crucially important for autonomous driving vehicles. The sparsity of point clouds in 3d scenes, especially for smaller targets like pedestrians and bicycles that contain few... 详细信息
来源: 评论
Adversarial Obstacle Generation Against LidAR-Based 3d object detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEdIA 2024年 26卷 2686-2699页
作者: Wang, Jian Li, Fan Zhang, Xuchong Sun, Hongbin Xi An Jiao Tong Univ Sch Informat & Commun Engn Shaanxi Key Lab Deep Space Explorat Intelligent In Xian 710049 Peoples R China Xi An Jiao Tong Univ Coll Artificial Intelligence Xian 710049 Peoples R China
LidAR sensors are widely used in many safety-critical applications such as autonomous driving and drone control, and the collected data called point clouds are subsequently processed by 3d object detectors for visual ... 详细信息
来源: 评论
Reinforced Voxel-RCNN: An Efficient 3d object detection Method Based on Feature Aggregation*
收藏 引用
IEICE TRANSACTIONS ON INFORMATION ANd SYSTEMS 2024年 第9期E107D卷 1228-1238页
作者: Jiang, Jia-ji Wan, Hai-bin Sun, Hong-min Qin, Tuan-fa Wang, Zheng-qiang Guangxi Univ Sch Comp Elect & Informat Nanning Peoples R China Guangxi Univ Guangxi Key Lab Multimedia Commun & Network Techno Nanning Peoples R China Guangxi Vocat & Tech Inst Ind Nanning 530001 Guangxi Peoples R China Chongqing Univ Posts & Telecommun Sch Commun & Informat Engn Chongqing 400065 Peoples R China
In this paper, the Towards High Performance Voxel-based object detection model is used as the benchmark network. Aiming at the problems existing in the current mainstream 3d point cloud voxelization methods, such as t... 详细信息
来源: 评论
BRTPillar: boosting real-time 3d object detection based point cloud and RGB image fusion in autonomous driving
收藏 引用
INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING ANd CYBERNETICS 2025年 第1期18卷 217-235页
作者: Zhang, Zhitian Zhao, Hongdong Zhao, Yazhou Chen, dan Zhang, Ke Li, Yanqi Hebei Univ Technol Sch Elect & Informat Engn Tianjin Peoples R China
PurposeIn autonomous driving, the inherent sparsity of point clouds often limits the performance of object detection, while existing multimodal architectures struggle to meet the real-time requirements for 3d object d... 详细信息
来源: 评论
Exploiting Label Uncertainty for Enhanced 3d object detection From Point Clouds
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第6期25卷 6074-6089页
作者: Sun, Yang Lu, Bin Liu, Yonghuai Yang, Zhenyu Behera, Ardhendu Song, Ran Yuan, Hejin Jiang, Haiyan North China Elect Power Univ Engn Res Ctr Intelligent Comp Complex Energy Syst Minist Educ Baoding 071003 Peoples R China Edge Hill Univ Intelligent Visual Comp Res Ctr Ormskirk L39 4QP Lancs England Shandong Univ Sch Control Sci & Engn Jinan 250100 Peoples R China Nanjing Agr Univ Coll Artificial Intelligence Nanjing 210095 Peoples R China
Accurate detection of objects from LidAR point clouds is crucial for autonomous driving and environment modeling. However, uncertainties in ground truth labels due to occlusions, sparsity, and truncation can hinder mo... 详细信息
来源: 评论
ARIoU: Anchor-free Rotation-decoupling IoU-based optimization for 3d object detection
收藏 引用
NEUROCOMPUTING 2024年 594卷
作者: Wen, Chenyiming Sheng, Hualian Zhao, Ming-Min Zhao, Min-Jian Zhejiang Univ Coll Informat Sci & Elect Engn Hangzhou 310027 Peoples R China Zhejiang Prov Key Lab Informat Proc Commun & Netwo Hangzhou 310027 Peoples R China
The rotation-decoupling strategy was developed in outdoor 3d object detection with certain performance improvement. However, its anchor-based architecture limits its further improvement in indoor 3d object detection. ... 详细信息
来源: 评论
SimLOG: Simultaneous Local-Global Feature Learning for 3d object detection in Indoor Point Clouds
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第12期25卷 19482-19495页
作者: Wei, Mingqiang Chen, Baian Nan, Liangliang Xie, Haoran Gu, Lipeng Lu, dening Wang, Fu Lee Li, Qing Nanjing Univ Aeronaut & Astronaut Sch Comp Sci & Technol Nanjing 211106 Peoples R China Nanjing Univ Aeronaut & Astronaut Shenzhen Inst Res Shenzhen 518000 Peoples R China Delft Univ Technol Urban Data Sci Sect NL-2628 CD Delft Netherlands Lingnan Univ Dept Comp & Decis Sci Hong Kong Peoples R China Univ Waterloo Dept Syst Design Engn Waterloo ON N2L 3G1 Canada Hong Kong Metropolitan Univ Sch Sci & Technol Hong Kong Peoples R China Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China
The acquisition of both local and global features from irregular point clouds is crucial for 3d object detection (3dOd). Current mainstream 3d detectors neglect significant local features during pooling operations or ... 详细信息
来源: 评论
dMFF: dual-way multimodal feature fusion for 3d object detection
收藏 引用
SIGNAL IMAGE ANd VIdEO PROCESSING 2024年 第1期18卷 455-463页
作者: dong, Xiaopeng di, Xiaoguang Wang, Wenzhuang Harbin Inst Technol Control & Simulat Ctr Harbin Peoples R China
Recently, multimodal 3d object detection that fuses the complementary information from LidAR data and RGB images has been an active research topic. However, it is not trivial to fuse images and point clouds because of... 详细信息
来源: 评论
Multi-Sensor Fusion Technology for 3d object detection in Autonomous driving: A Review
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第2期25卷 1148-1165页
作者: Wang, Xuan Li, Kaiqiang Chehri, Abdellah Yantai Univ Sch Comp & Control Engn Yantai 264005 Peoples R China Royal Mil Coll Canada Dept Math & Comp Sci Kingston ON K7K 7B4 Canada
With the development of society, technological progress, and new needs, autonomous driving has become a trendy topic in smart cities. due to technological limitations, autonomous driving is used mainly in limited and ... 详细信息
来源: 评论