咨询与建议

限定检索结果

文献类型

  • 567 篇 期刊文献
  • 342 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 887 篇 工学
    • 558 篇 计算机科学与技术...
    • 454 篇 电气工程
    • 122 篇 控制科学与工程
    • 116 篇 交通运输工程
    • 99 篇 软件工程
    • 92 篇 信息与通信工程
    • 86 篇 仪器科学与技术
    • 59 篇 土木工程
    • 38 篇 测绘科学与技术
    • 36 篇 电子科学与技术(可...
    • 35 篇 机械工程
    • 21 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 8 篇 材料科学与工程(可...
    • 8 篇 航空宇航科学与技...
    • 4 篇 化学工程与技术
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 生物医学工程(可授...
  • 153 篇 理学
    • 69 篇 化学
    • 61 篇 生物学
    • 57 篇 物理学
    • 26 篇 地球物理学
    • 5 篇 数学
    • 3 篇 地理学
  • 104 篇 医学
    • 101 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 43 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 2 篇 农学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 917 篇 3d object detect...
  • 231 篇 autonomous drivi...
  • 140 篇 point cloud
  • 127 篇 three-dimensiona...
  • 125 篇 object detection
  • 118 篇 deep learning
  • 109 篇 feature extracti...
  • 104 篇 lidar
  • 90 篇 point cloud comp...
  • 66 篇 laser radar
  • 58 篇 point clouds
  • 48 篇 transformer
  • 48 篇 autonomous vehic...
  • 46 篇 detectors
  • 34 篇 cameras
  • 31 篇 multi-modal fusi...
  • 29 篇 proposals
  • 29 篇 attention mechan...
  • 28 篇 sensor fusion
  • 25 篇 semantics

机构

  • 15 篇 univ chinese aca...
  • 10 篇 univ sci & techn...
  • 9 篇 chinese acad sci...
  • 9 篇 huazhong univ sc...
  • 8 篇 shanghai ai lab ...
  • 7 篇 tsinghua univ de...
  • 7 篇 tsinghua univ sc...
  • 7 篇 chinese univ hon...
  • 7 篇 univ sci & techn...
  • 7 篇 xi an jiao tong ...
  • 7 篇 harbin inst tech...
  • 7 篇 tech univ munich...
  • 7 篇 chinese acad sci...
  • 6 篇 baidu inc people...
  • 6 篇 chinese acad sci...
  • 6 篇 chinese acad sci...
  • 6 篇 tsinghua univ st...
  • 6 篇 changchun univ s...
  • 6 篇 tsinghua univ pe...
  • 5 篇 nanjing univ pos...

作者

  • 10 篇 li jun
  • 9 篇 wang li
  • 9 篇 ma huimin
  • 8 篇 tao chongben
  • 8 篇 zhao huaici
  • 7 篇 lu ke
  • 7 篇 arens michael
  • 7 篇 hammer marcus
  • 7 篇 hebel marcus
  • 7 篇 wang ke
  • 7 篇 zhang guoxin
  • 7 篇 song ziying
  • 7 篇 zhang yong
  • 6 篇 zheng nanning
  • 6 篇 ye xiaoqing
  • 6 篇 ma jie
  • 6 篇 liu haizhuang
  • 6 篇 wang peng
  • 6 篇 li ruifeng
  • 6 篇 zhang xinyu

语言

  • 898 篇 英文
  • 13 篇 其他
  • 3 篇 中文
  • 1 篇 朝鲜文
检索条件"主题词=3D Object Detection"
917 条 记 录,以下是141-150 订阅
排序:
SparseFusion3d: Sparse Sensor Fusion for 3d object detection by Radar and Camera in Environmental Perception
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 2024年 第1期9卷 1524-1536页
作者: Yu, Zedong Wan, Weibing Ren, Maiyu Zheng, Xiuyuan Fang, Zhijun Shanghai Univ Engn Sci Sch Elect & Elect Engn Int Joint Lab Intelligent Sensing & Control Shanghai 201620 Peoples R China Donghua Univ Sch Comp Sci & Technol Shanghai 200051 Peoples R China
In the context of autonomous driving environment perception, multi-modal fusion plays a pivotal role in enhancing robustness, completeness, and accuracy, thereby extending the performance boundary of the perception sy... 详细信息
来源: 评论
Semi-Supervised Online Continual Learning for 3d object detection in Mobile Robotics
收藏 引用
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS 2024年 第4期110卷 1-16页
作者: Liu, Binhong Yao, dexin Yang, Rui Yan, Zhi Yang, Tao Northwestern Polytech Univ Unmanned Syst Res Inst Natl Key Lab Unmanned Aerial Vehicle Technol Integ Xian 710072 Peoples R China Univ Bourgogne Franche Comte CIAD UTBM UMR7533 F-90010 Belfort France
Continual learning addresses the challenge of acquiring and retaining knowledge over time across multiple tasks and environments. Previous research primarily focuses on offline settings where models learn through incr... 详细信息
来源: 评论
RCF-TP: Radar-Camera Fusion With Temporal Priors for 3d object detection
收藏 引用
IEEE ACCESS 2024年 12卷 127212-127223页
作者: Miron, Yakov drews, Florian Faion, Florian di Castro, dotan Klein, Itzik Bosch Res IL-3109701 Haifa Israel Univ Haifa Hatter Dept Marine Technol IL-3109701 Haifa Israel Bosch Res D-71272 Renningen Germany
Sensor fusion is an important method for achieving robust perception systems in autonomous driving, Internet of things, and robotics. Most multi-modal 3d detection models assume the data is synchronized between the se... 详细信息
来源: 评论
MCHFormer: A Multi-Cross Hybrid Former of Point-Image for 3d object detection
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 2024年 第1期9卷 383-394页
作者: Cao, Feng Xue, Jun Tao, Chongben Luo, Xizhao Gao, Zhen Zhang, Zufeng Zheng, Sifa Zhu, Yuan Shanxi Univ Sch Comp & Informat Technol Taiyuan 030006 Peoples R China Suzhou Univ Sci & Technol Sch Elect & Informat Engn Suzhou 215009 Peoples R China Tsinghua Univ Suzhou Automobile Res Inst Suzhou 215134 Peoples R China Soochow Univ Sch Comp Sci & Technol Suzhou 215006 Peoples R China McMaster Univ Fac Engn Hamilton ON Canada Tsinghua Univ Beijing 100084 Peoples R China Tongji Univ Coll Automot Studies Shanghai 201804 Peoples R China
Mismatch often occurs between local and global information in multimodal data during downscaling transformation, which results in the loss of localization information. A Multi-Cross Hybrid Former (MCHFormer) of point-... 详细信息
来源: 评论
Multi-Modal 3d object detection by Box Matching
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第12期25卷 19917-19928页
作者: Liu, Zhe Ye, Xiaoqing Zou, Zhikang He, Xinwei Tan, Xiao ding, Errui Wang, Jingdong Bai, Xiang Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan 430074 Peoples R China Baidu Inc Beijing 100085 Peoples R China Huazhong Agr Univ Coll Informat Wuhan 430070 Peoples R China Huazhong Univ Sci & Technol Sch Software Wuhan 430074 Peoples R China
Multi-modal 3d object detection has received growing attention as the information from different sensors like LidAR and cameras are complementary. Most fusion methods for 3d detection rely on an accurate alignment and... 详细信息
来源: 评论
PSNS-SSd: Pixel-Level Suppressed Nonsalient Semantic and Multicoupled Channel Enhancement Attention for 3d object detection
收藏 引用
IEEE ROBOTICS ANd AUTOMATION LETTERS 2024年 第1期9卷 603-610页
作者: Song, Xiaogang Zhou, Zhenhua Zhang, Lei Lu, Xiaofeng Hei, Xinhong Xian Univ Technol Sch Comp Sci & Engn Xian 710048 Peoples R China Univ Shaanxi Prov Engn Res Ctr Human Machine Integrat Intelligent Ro Xian 710048 Peoples R China Aviation Ind Corp China Xian Aeronaut Comp Tech Res Inst Xian 710048 Peoples R China
In the field of 3d object detection, voxel-based methods are the most commonly used and exhibit high accuracy. However, point-based networks, which have the capability to preserve the original point features, are unab... 详细信息
来源: 评论
VSL-Net: Voxel structure learning for 3d object detection
收藏 引用
AdVANCEd ENGINEERING INFORMATICS 2024年 59卷
作者: Cao, Feng Zhou, Feng Tao, Chongben Xue, Jun Gao, Zhen Zhang, Zufeng Zhu, Yuan Shanxi Univ Sch Comp & Informat Technol Taiyuan 030006 Peoples R China Suzhou Univ Sci & Technol Sch Elect & Informat Engn Suzhou 215009 Peoples R China Tsinghua Univ Suzhou Automobile Res Inst Suzhou 215134 Peoples R China McMaster Univ Fac Engn Hamilton ON L8S 0A Canada Tsinghua Univ Dept Automat Beijing 100084 Peoples R China Tongji Univ Coll Automot Studies Shanghai 201804 Peoples R China
Current detection methods with single stage generally lack contextual structure information, the classification and location confidence are inconsistent, which are not able to achieve accurate dynamic multi -object de... 详细信息
来源: 评论
Transformer-Based Stereo-Aware 3d object detection From Binocular Images
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第12期25卷 19675-19687页
作者: Sun, Hanqing Pang, Yanwei Cao, Jiale Xie, Jin Li, Xuelong Chinese Acad Sci Changchun Inst Opt Fine Mech & Phys Changchun 130033 Peoples R China Tianjin Univ Sch Elect & Informat Engn Tianjin Key Lab Brain Inspired Intelligence Techn Tianjin 300072 Peoples R China Chongqing Univ Sch Big Data & Software Engn Chongqing 400050 Peoples R China Northwestern Polytech Univ Sch Comp Sci Xian 710060 Peoples R China Northwestern Polytech Univ Sch Artificial Intelligence Opt & Elect iOPEN Xian 710060 Peoples R China
Transformers have shown promising progress in various visual object detection tasks, including monocular 2d/3d detection and surround-view 3d detection. More importantly, the attention mechanism in the Transformer mod... 详细信息
来源: 评论
CL-fusionBEV: 3d object detection method with camera-LidAR fusion in Bird's Eye View
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2024年 第6期10卷 7681-7696页
作者: Shi, Peicheng Liu, Zhiqiang dong, Xinlong Yang, Aixi Anhui Polytech Univ Sch Mech & Automot Engn Wuhu 241000 Peoples R China Nanjing Univ Aeronaut & Astronaut Coll Mech & Elect Engn Nanjing 210016 Peoples R China Zhejiang Univ Polytech Inst Hangzhou 310058 Peoples R China
In the wave of research on autonomous driving, 3d object detection from the Bird's Eye View (BEV) perspective has emerged as a pivotal area of focus. The essence of this challenge is the effective fusion of camera... 详细信息
来源: 评论
GraphAlign plus plus : An Accurate Feature Alignment by Graph Matching for Multi-Modal 3d object detection
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS ANd SYSTEMS FOR VIdEO TECHNOLOGY 2024年 第4期34卷 2619-2632页
作者: Song, Ziying Jia, Caiyan Yang, Lei Wei, Haiyue Liu, Lin Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing Key Lab Traff Data Anal & Min Beijing 100044 Peoples R China Tsinghua Univ State Key Lab Automot Safety & Energy Beijing 050018 Peoples R China Hebei Univ Sci & Technol Sch Informat Sci & Engn Shijiazhuang 050018 Peoples R China
LidAR and camera are complementary sensors for 3d object detection in autonomous driving. However, it is challenging to explore the unnatural interaction between point clouds and images, and the critical factor is how... 详细信息
来源: 评论