咨询与建议

限定检索结果

文献类型

  • 567 篇 期刊文献
  • 342 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 887 篇 工学
    • 558 篇 计算机科学与技术...
    • 454 篇 电气工程
    • 122 篇 控制科学与工程
    • 116 篇 交通运输工程
    • 99 篇 软件工程
    • 92 篇 信息与通信工程
    • 86 篇 仪器科学与技术
    • 59 篇 土木工程
    • 38 篇 测绘科学与技术
    • 36 篇 电子科学与技术(可...
    • 35 篇 机械工程
    • 21 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 8 篇 材料科学与工程(可...
    • 8 篇 航空宇航科学与技...
    • 4 篇 化学工程与技术
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 生物医学工程(可授...
  • 153 篇 理学
    • 69 篇 化学
    • 61 篇 生物学
    • 57 篇 物理学
    • 26 篇 地球物理学
    • 5 篇 数学
    • 3 篇 地理学
  • 104 篇 医学
    • 101 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 43 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 2 篇 农学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 917 篇 3d object detect...
  • 231 篇 autonomous drivi...
  • 140 篇 point cloud
  • 127 篇 three-dimensiona...
  • 125 篇 object detection
  • 118 篇 deep learning
  • 109 篇 feature extracti...
  • 104 篇 lidar
  • 90 篇 point cloud comp...
  • 66 篇 laser radar
  • 58 篇 point clouds
  • 48 篇 transformer
  • 48 篇 autonomous vehic...
  • 46 篇 detectors
  • 34 篇 cameras
  • 31 篇 multi-modal fusi...
  • 29 篇 proposals
  • 29 篇 attention mechan...
  • 28 篇 sensor fusion
  • 25 篇 semantics

机构

  • 15 篇 univ chinese aca...
  • 10 篇 univ sci & techn...
  • 9 篇 chinese acad sci...
  • 9 篇 huazhong univ sc...
  • 8 篇 shanghai ai lab ...
  • 7 篇 tsinghua univ de...
  • 7 篇 tsinghua univ sc...
  • 7 篇 chinese univ hon...
  • 7 篇 univ sci & techn...
  • 7 篇 xi an jiao tong ...
  • 7 篇 harbin inst tech...
  • 7 篇 tech univ munich...
  • 7 篇 chinese acad sci...
  • 6 篇 baidu inc people...
  • 6 篇 chinese acad sci...
  • 6 篇 chinese acad sci...
  • 6 篇 tsinghua univ st...
  • 6 篇 changchun univ s...
  • 6 篇 tsinghua univ pe...
  • 5 篇 nanjing univ pos...

作者

  • 10 篇 li jun
  • 9 篇 wang li
  • 9 篇 ma huimin
  • 8 篇 tao chongben
  • 8 篇 zhao huaici
  • 7 篇 lu ke
  • 7 篇 arens michael
  • 7 篇 hammer marcus
  • 7 篇 hebel marcus
  • 7 篇 wang ke
  • 7 篇 zhang guoxin
  • 7 篇 song ziying
  • 7 篇 zhang yong
  • 6 篇 zheng nanning
  • 6 篇 ye xiaoqing
  • 6 篇 ma jie
  • 6 篇 liu haizhuang
  • 6 篇 wang peng
  • 6 篇 li ruifeng
  • 6 篇 zhang xinyu

语言

  • 898 篇 英文
  • 13 篇 其他
  • 3 篇 中文
  • 1 篇 朝鲜文
检索条件"主题词=3D Object Detection"
917 条 记 录,以下是151-160 订阅
排序:
MENet: Multi-Modal Mapping Enhancement Network for 3d object detection in Autonomous driving
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第8期25卷 9397-9410页
作者: Liu, Moyun Chen, Youping Xie, Jingming Zhu, Yijie Zhang, Yang Yao, Lei Bing, Zhenshan Zhuang, Genghang Huang, Kai Zhou, Joey Tianyi Huazhong Univ Sci & Technol Sch Mech Sci & Engn Wuhan 430074 Peoples R China ASTAR IHPC Singapore 138632 Singapore ASTAR CFAR Singapore 138632 Singapore Hubei Univ Technol Sch Mech Engn Wuhan 430068 Peoples R China Nanjing Univ Natl Key Lab Novel Software Technol Nanjing 210023 Peoples R China Hong Kong Polytech Univ Dept Elect & Elect Engn Hong Kong Peoples R China Tech Univ Munich Dept Informat D-85748 Munich Germany Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou 510006 Peoples R China
To achieve more accurate perception performance, LidAR and camera are gradually chosen to improve 3d object detection simultaneously. However, it is still a non-trivial task to build an effective fusion mechanism, and... 详细信息
来源: 评论
PCdR-dFF: multi-modal 3d object detection based on point cloud diversity representation and dual feature fusion
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2024年 第16期36卷 9329-9346页
作者: Xia, Chenxing Li, Xubing Gao, Xiuju Ge, Bin Li, Kuan-Ching Fang, Xianjin Zhang, Yan Yang, Ke Anhui Univ Sci & Technol Coll Comp Sci & Engn Huainan 232001 Peoples R China Inst Energy Hefei Comprehens Natl Sci Ctr Hefei Anhui Peoples R China Anhui Purvar Bigdata Technol Co Ltd Huainan 232001 Peoples R China Anhui Univ Sci & Technol Coll Elect & Informat Engn Huainan Anhui Peoples R China Providence Univ Dept Comp Sci & Informat Engn Taichung Taiwan Inst Artificial Intelligence Hefei Comprehens Natl Sci Ctr Hefei Peoples R China Anhui Univ Sch Elect & Informat Engn Hefei Anhui Peoples R China
Recently, multi-modal 3d object detection techniques based on point clouds and images have received increasing attention. However, existing methods for multi-modal feature fusion are often relatively singular, and sin... 详细信息
来源: 评论
Focal-PETR: Embracing Foreground for Efficient Multi-Camera 3d object detection
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 2024年 第1期9卷 1481-1489页
作者: Wang, Shihao Jiang, Xiaohui Li, Ying Beijing Inst Technol Beijing 100081 Peoples R China
The dominant multi-camera 3d detection paradigm is based on explicit 3d feature construction, which requires complicated indexing of local image-view features via 3d-to-2d projection. Other methods implicitly introduc... 详细信息
来源: 评论
dual-domain deformable feature fusion for multi-modal 3d object detection
收藏 引用
JOURNAL OF ELECTRONIC IMAGING 2024年 第6期33卷
作者: Wang, Shihao deng, Tao Chongqing Jiaotong Univ Sch Mechatron & Vehicle Engn Chongqing Peoples R China Chongqing Jiaotong Univ Sch Aeronaut Chongqing Peoples R China Chongqing Key Lab Green Aviat Energy & Power Chongqing Peoples R China Chongqing Jiaotong Univ Green Aerotech Res Chongqing Peoples R China
Recent advancements in 3d object detection using light detection and ranging (LidAR)-camera fusion have enhanced autonomous driving perception. However, aligning LidAR and image data during multimodal fusion remains a... 详细信息
来源: 评论
BEVRefiner: Improving 3d object detection in Bird's-Eye-View via dual Refinement
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第10期25卷 15094-15105页
作者: Wang, Binglu Zheng, Haowen Zhang, Lei Liu, Nian Anwer, Rao Muhammad Cholakkal, Hisham Zhao, Yongqiang Li, Zhijun Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China Beijing Inst Technol Radar Res Lab Natl Key Lab Sci & Technol Space Born Intelligent Beijing 100811 Peoples R China Beijing Inst Technol Sch Informat & Elect Beijing 100811 Peoples R China Mohamed bin Zayed Univ Artificial Intelligence Comp Vis Dept Abu Dhabi U Arab Emirates Tongji Univ Sch Mech Engn Shanghai 200070 Peoples R China
Many multi-view camera-based 3d object detection models transform the image features into Bird's-Eye-View (BEV) via the Lift-Splat-Shoot (LSS) mechanism, which "lifts" 2d camera-view features to the 3d v... 详细信息
来源: 评论
Robustness-Aware 3d object detection in Autonomous driving: A Review and Outlook
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第11期25卷 15407-15436页
作者: Song, Ziying Liu, Lin Jia, Feiyang Luo, Yadan Jia, Caiyan Zhang, Guoxin Yang, Lei Wang, Li Beijing Jiaotong Univ Sch Comp Sci & Technol Beijing Key Lab Traff Data Anal & Min Beijing 100044 Peoples R China Univ Queensland Sch Informat Technol & Elect Engn St Lucia Qld 4072 Australia Beijing Univ Posts & Telecommun Sch Comp Sci Beijing 100876 Peoples R China Tsinghua Univ State Key Lab Intelligent Green Vehicle & Mobil Beijing 100084 Peoples R China Tsinghua Univ Sch Vehicle & Mobil Beijing 100084 Peoples R China Beijing Inst Technol Sch Mech Engn Beijing 100081 Peoples R China
In the realm of modern autonomous driving, the perception system is indispensable for accurately assessing the state of the surrounding environment, thereby enabling informed prediction and planning. The key step to t... 详细信息
来源: 评论
A Smart IoT Enabled End-to-End 3d object detection System for Autonomous Vehicles
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2023年 第11期24卷 13078-13087页
作者: Ahmed, Imran Jeon, Gwanggil Chehri, Abdellah Anglia Ruskin Univ Sch Comp & Informat Sci Cambridge CB1 1PT England Incheon Natl Univ Dept Embedded Syst Engn Incheon 22012 South Korea Royal Mil Coll Canada Dept Math & Comp Sci Kingston ON K7K 7B4 Canada
Integration of advanced signal processing, image processing, deep learning, edge computing, and the Internet of Things (IoT) into vehicles allows intelligent automated vehicles to navigate autonomously in different en... 详细信息
来源: 评论
Adaptive depth position encoding for sparse query-based 3d object detection from multi-camera images
收藏 引用
PATTERN RECOGNITION 2025年 167卷
作者: Linghu, Junjie Ling, Qiang Univ Sci & Technol China Hefei 230027 Peoples R China
Recently, multi-camera based 3d object detection has found wide applications in the field of autonomous driving. To accomplish that task, dense query-based detectors build explicit dense BEV(Bird's Eye View) featu... 详细信息
来源: 评论
NRAP-RCNN: A Pseudo Point Cloud 3d object detection Method Based on Noise-Reduction Sparse Convolution and Attention Mechanism
收藏 引用
INFORMATION 2025年 第3期16卷 176-176页
作者: Zhou, Ziyue Jia, Yongqing Zhu, Tao Wan, Yaping Univ South China Sch Comp Sci Hengyang 421001 Peoples R China Hunan Elect Res Inst Testing Grp Co Ltd Technol Dept Xiangxiang 411402 Peoples R China
In recent years, pseudo point clouds generated from depth completion of RGB images and LidAR data have provided a robust foundation for multimodal 3d object detection. However, the generation process often introduces ... 详细信息
来源: 评论
Pillar-X: Integrating Self-Learned Image Features to Improve 3d object detection
收藏 引用
IEEE ACCESS 2025年 13卷 83071-83081页
作者: Csontho, Mihaly Rovid, Andras Budapest Univ Technol & Econ Fac Transportat Engn & Vehicle Engn Dept Automot Technol H-1111 Budapest Hungary
Accurate 3d object detection is essential for robust perception systems in autonomous vehicles. This paper presents Pillar-X, a 3d object recognition framework designed to generate and use self-learned image features.... 详细信息
来源: 评论