咨询与建议

限定检索结果

文献类型

  • 567 篇 期刊文献
  • 342 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 887 篇 工学
    • 558 篇 计算机科学与技术...
    • 454 篇 电气工程
    • 122 篇 控制科学与工程
    • 116 篇 交通运输工程
    • 99 篇 软件工程
    • 92 篇 信息与通信工程
    • 86 篇 仪器科学与技术
    • 59 篇 土木工程
    • 38 篇 测绘科学与技术
    • 36 篇 电子科学与技术(可...
    • 35 篇 机械工程
    • 21 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 8 篇 材料科学与工程(可...
    • 8 篇 航空宇航科学与技...
    • 4 篇 化学工程与技术
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 生物医学工程(可授...
  • 153 篇 理学
    • 69 篇 化学
    • 61 篇 生物学
    • 57 篇 物理学
    • 26 篇 地球物理学
    • 5 篇 数学
    • 3 篇 地理学
  • 104 篇 医学
    • 101 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 43 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 2 篇 农学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 917 篇 3d object detect...
  • 231 篇 autonomous drivi...
  • 140 篇 point cloud
  • 127 篇 three-dimensiona...
  • 125 篇 object detection
  • 118 篇 deep learning
  • 109 篇 feature extracti...
  • 104 篇 lidar
  • 90 篇 point cloud comp...
  • 66 篇 laser radar
  • 58 篇 point clouds
  • 48 篇 transformer
  • 48 篇 autonomous vehic...
  • 46 篇 detectors
  • 34 篇 cameras
  • 31 篇 multi-modal fusi...
  • 29 篇 proposals
  • 29 篇 attention mechan...
  • 28 篇 sensor fusion
  • 25 篇 semantics

机构

  • 15 篇 univ chinese aca...
  • 10 篇 univ sci & techn...
  • 9 篇 chinese acad sci...
  • 9 篇 huazhong univ sc...
  • 8 篇 shanghai ai lab ...
  • 7 篇 tsinghua univ de...
  • 7 篇 tsinghua univ sc...
  • 7 篇 chinese univ hon...
  • 7 篇 univ sci & techn...
  • 7 篇 xi an jiao tong ...
  • 7 篇 harbin inst tech...
  • 7 篇 tech univ munich...
  • 7 篇 chinese acad sci...
  • 6 篇 baidu inc people...
  • 6 篇 chinese acad sci...
  • 6 篇 chinese acad sci...
  • 6 篇 tsinghua univ st...
  • 6 篇 changchun univ s...
  • 6 篇 tsinghua univ pe...
  • 5 篇 nanjing univ pos...

作者

  • 10 篇 li jun
  • 9 篇 wang li
  • 9 篇 ma huimin
  • 8 篇 tao chongben
  • 8 篇 zhao huaici
  • 7 篇 lu ke
  • 7 篇 arens michael
  • 7 篇 hammer marcus
  • 7 篇 hebel marcus
  • 7 篇 wang ke
  • 7 篇 zhang guoxin
  • 7 篇 song ziying
  • 7 篇 zhang yong
  • 6 篇 zheng nanning
  • 6 篇 ye xiaoqing
  • 6 篇 ma jie
  • 6 篇 liu haizhuang
  • 6 篇 wang peng
  • 6 篇 li ruifeng
  • 6 篇 zhang xinyu

语言

  • 898 篇 英文
  • 13 篇 其他
  • 3 篇 中文
  • 1 篇 朝鲜文
检索条件"主题词=3D Object Detection"
917 条 记 录,以下是161-170 订阅
排序:
Fully Sparse Fusion for 3d object detection
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS ANd MACHINE INTELLIGENCE 2024年 第11期46卷 7217-7231页
作者: Li, Yingyan Fan, Lue Liu, Yang Huang, Zehao Chen, Yuntao Wang, Naiyan Zhang, Zhaoxiang Chinese Acad Sci CASIA Inst Automat Ctr Researchon Intelligent Percept & Comp CRIPAC State Key Lab Multimodal Artificial Intelligence S Beijing 100190 Peoples R China Univ Chinese Acad Sci UCAS Sch Future Technol Beijing 100049 Peoples R China TuSimple Beijing 100020 Peoples R China Chinese Acad Sci HKISICAS Hong Kong Inst Sci & Innovat Ctr Artificial Intelligence & Robot Hong Kong Peoples R China
Currently prevalent multi-modal 3d detection methods rely on dense detectors that usually use dense Bird's-Eye-View (BEV) feature maps. However, the cost of such BEV feature maps is quadratic to the detection rang... 详细信息
来源: 评论
Automatic Pseudo-LidAR Annotation: Generation of Training data for 3d object detection Networks
收藏 引用
IEEE ACCESS 2024年 12卷 14227-14237页
作者: Oh, Changsuk Jang, Youngseok Shim, dongseok Kim, Changhyeon Kim, Junha Kim, H. Jin Seoul Natl Univ Dept Aerosp Engn Seoul 08826 South Korea Seoul Natl Univ Artificial Intelligence Inst Dept Mech & Aerosp Engn Seoul 08826 South Korea Seoul Natl Univ Interdisciplinary Program Artificial Intelligence Seoul 08826 South Korea Samsung Res Seoul 06765 South Korea
object detection in 3d is a key ingredient of various autonomous systems. Many 3d object detection methods rely on LidAR, as it is robust to illumination conditions and provides accurate distance measurements. To appl... 详细信息
来源: 评论
VPC-VoxelNet: multi-modal fusion 3d object detection networks based on virtual point clouds
收藏 引用
INTERNATIONAL JOURNAL OF MULTIMEdIA INFORMATION RETRIEVAL 2025年 第1期14卷 1-11页
作者: Zhang, Qiang Shi, Qin Cheng, Teng Zhang, Junning Chen, Jiong Hefei Univ Technol Engn Res Ctr Intelligent Transportat & Cooperat Ve Key Lab Automated Vehicle Safety Technol Anhui Pro Hefei 230009 Peoples R China Chery Automobile Co Ltd Wuhu 241000 Peoples R China Natl Univ Def Technol Sch Elect Countermeasures Hefei 230041 Peoples R China Nio Automot Technol Anhui Co LTD Hefei 230041 Peoples R China
To address the impact of sparsity and disorder of point clouds on object detection accuracy, this paper proposes a multi-modal fusion network VPC-VoxelNet based on virtual point clouds. Firstly, virtual point clouds a... 详细信息
来源: 评论
MSFNet3d: Monocular 3d object detection via dual-Branch depth-Consistent Fusion and Semantic-Guided Point Cloud Refinement
收藏 引用
WORLd ELECTRIC VEHICLE JOURNAL 2025年 第3期16卷 173-173页
作者: Yang, Rong You, Zhijie Luo, Renhui Guangxi Univ Coll Mech Engn Nanning 530004 Peoples R China
The rapid development of autonomous driving has underscored the pivotal role of 3d perception. Monocular 3d object detection, as a cost-effective alternative to expensive lidar systems, is garnering increasing attenti... 详细信息
来源: 评论
ImFusion: Boosting Two-Stage 3d object detection via Image Candidates
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2024年 31卷 241-245页
作者: Tao, Manli Zhao, Chaoyang Wang, Jinqiao Tang, Ming Chinese Acad Sci Inst Automat Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China ObjectEye Inc Beijing 100000 Peoples R China
Multi-modal fusion methods combine the advantages of both point clouds and RGB images to boost the performance of 3d object detection. despite the significant progress, we find that existing two-stage multi-modal fusi... 详细信息
来源: 评论
Adaptive learning point cloud and image diversity feature fusion network for 3d object detection
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2024年 第2期10卷 2825-2837页
作者: Yan, Weiqing Liu, Shile Liu, Hao Yue, Guanghui Wang, Xuan Song, Yongchao Xu, Jindong Yantai Univ Sch Comp & Control Engn Yantai Peoples R China Shenzhen Univ Hlth Sci Ctr Sch Biomed Engn Shenzhen 518060 Peoples R China
3d object detection is a critical task in the fields of virtual reality and autonomous driving. Given that each sensor has its own strengths and limitations, multi-sensor-based 3d object detection has gained popularit... 详细信息
来源: 评论
A Unified Framework for Adversarial Patch Attacks Against Visual 3d object detection in Autonomous driving
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS ANd SYSTEMS FOR VIdEO TECHNOLOGY 2025年 第5期35卷 4949-4962页
作者: Wang, Jian Li, Fan He, Lijun Xi An Jiao Tong Univ Sch Informat & Commun Engn Shaanxi Key Lab Deep Space Explorat Intelligent In Xian 710049 Peoples R China
The rapid development of vision-based 3d perceptions, in conjunction with the inherent vulnerability of deep neural networks to adversarial examples, motivates us to investigate realistic adversarial attacks for the 3... 详细信息
来源: 评论
SEGANet: 3d object detection with shape-enhancement and geometry-aware network
收藏 引用
COMPUTERS & ELECTRICAL ENGINEERING 2023年 第1期110卷
作者: Zhou, Jing Hu, Yiyu Lai, Zhongyuan Wang, Tianjiang Jianghan Univ Sch Artificial Intelligence Wuhan 430056 Hubei Peoples R China Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430074 Hubei Peoples R China
3d object detection approaches from point clouds develop rapidly. However, the distribution of point clouds is unbalanced in the real scene, and thus the distant or occluded objects suffer from too few points to be pe... 详细信息
来源: 评论
VPFNet: Improving 3d object detection With Virtual Point Based LidAR and Stereo data Fusion
收藏 引用
IEEE TRANSACTIONS ON MULTIMEdIA 2023年 25卷 5291-5304页
作者: Zhu, Hanqi deng, Jiajun Zhang, Yu Ji, Jianmin Mao, Qiuyu Li, Houqiang Zhang, Yanyong Univ Sci & Technol China Sch Comp Sci & Technol Hefei 230027 Peoples R China Univ Sci & Technol China Dept Elect Engn & Informat Sci Hefei 230027 Peoples R China
It has been well recognized that fusing the complementary information from depth-aware LidAR point clouds and semantic-rich stereo images would benefit 3d object detection. Nevertheless, it is non-trivial to explore t... 详细信息
来源: 评论
Multi-Source Features Fusion Single Stage 3d object detection With Transformer
收藏 引用
IEEE ROBOTICS ANd AUTOMATION LETTERS 2023年 第4期8卷 2062-2069页
作者: Tong, Guofeng Li, Zheng Peng, Hao Wang, Yaqi Northeastern Univ Coll Informat Sci & Engn Shenyang 110819 Peoples R China
due to the high efficiency in extracting context information, voxel-based method is widely used in 3d object detection from point cloud. However, the quantization loss of geometric information is inevitable in the pro... 详细信息
来源: 评论