咨询与建议

限定检索结果

文献类型

  • 567 篇 期刊文献
  • 342 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 917 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 887 篇 工学
    • 558 篇 计算机科学与技术...
    • 454 篇 电气工程
    • 122 篇 控制科学与工程
    • 116 篇 交通运输工程
    • 99 篇 软件工程
    • 92 篇 信息与通信工程
    • 86 篇 仪器科学与技术
    • 59 篇 土木工程
    • 38 篇 测绘科学与技术
    • 36 篇 电子科学与技术(可...
    • 35 篇 机械工程
    • 21 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 8 篇 材料科学与工程(可...
    • 8 篇 航空宇航科学与技...
    • 4 篇 化学工程与技术
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 生物医学工程(可授...
  • 153 篇 理学
    • 69 篇 化学
    • 61 篇 生物学
    • 57 篇 物理学
    • 26 篇 地球物理学
    • 5 篇 数学
    • 3 篇 地理学
  • 104 篇 医学
    • 101 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 43 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 2 篇 农学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 917 篇 3d object detect...
  • 231 篇 autonomous drivi...
  • 140 篇 point cloud
  • 127 篇 three-dimensiona...
  • 125 篇 object detection
  • 118 篇 deep learning
  • 109 篇 feature extracti...
  • 104 篇 lidar
  • 90 篇 point cloud comp...
  • 66 篇 laser radar
  • 58 篇 point clouds
  • 48 篇 transformer
  • 48 篇 autonomous vehic...
  • 46 篇 detectors
  • 34 篇 cameras
  • 31 篇 multi-modal fusi...
  • 29 篇 proposals
  • 29 篇 attention mechan...
  • 28 篇 sensor fusion
  • 25 篇 semantics

机构

  • 15 篇 univ chinese aca...
  • 10 篇 univ sci & techn...
  • 9 篇 chinese acad sci...
  • 9 篇 huazhong univ sc...
  • 8 篇 shanghai ai lab ...
  • 7 篇 tsinghua univ de...
  • 7 篇 tsinghua univ sc...
  • 7 篇 chinese univ hon...
  • 7 篇 univ sci & techn...
  • 7 篇 xi an jiao tong ...
  • 7 篇 harbin inst tech...
  • 7 篇 tech univ munich...
  • 7 篇 chinese acad sci...
  • 6 篇 baidu inc people...
  • 6 篇 chinese acad sci...
  • 6 篇 chinese acad sci...
  • 6 篇 tsinghua univ st...
  • 6 篇 changchun univ s...
  • 6 篇 tsinghua univ pe...
  • 5 篇 nanjing univ pos...

作者

  • 10 篇 li jun
  • 9 篇 wang li
  • 9 篇 ma huimin
  • 8 篇 tao chongben
  • 8 篇 zhao huaici
  • 7 篇 lu ke
  • 7 篇 arens michael
  • 7 篇 hammer marcus
  • 7 篇 hebel marcus
  • 7 篇 wang ke
  • 7 篇 zhang guoxin
  • 7 篇 song ziying
  • 7 篇 zhang yong
  • 6 篇 zheng nanning
  • 6 篇 ye xiaoqing
  • 6 篇 ma jie
  • 6 篇 liu haizhuang
  • 6 篇 wang peng
  • 6 篇 li ruifeng
  • 6 篇 zhang xinyu

语言

  • 899 篇 英文
  • 13 篇 其他
  • 3 篇 中文
  • 1 篇 朝鲜文
检索条件"主题词=3D Object Detection"
917 条 记 录,以下是71-80 订阅
排序:
3d object detection for Autonomous driving: A Practical Survey  9
3D Object Detection for Autonomous Driving: A Practical Surv...
收藏 引用
9th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS)
作者: Ramajo-Ballester, Alvaro de la Escalera Hueso, Arturo Armingol Moreno, Jose Maria Univ Carlos III Madrid Intelligent Syst Lab Madrid Spain
Autonomous driving has been one of the most promising research lines in the last decade. Although still far off the sought-after level 5, the research community shows great advancements in one of the most challenging ... 详细信息
来源: 评论
SCNet3d: Rethinking the Feature Extraction Process of Pillar-Based 3d object detection
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2025年 第1期26卷 770-784页
作者: Li, Junru Wang, Zhiling Gong, diancheng Wang, Chunchun Chinese Acad Sci Hefei Inst Phys Sci Hefei 230031 Peoples R China Univ Sci & Technol China Hefei 230026 Peoples R China Anhui ShineAuto Autonomous Driving Technol Co Ltd Hefei 230088 Peoples R China Anhui Engn Lab Intelligent Driving Technol & Appli Hefei 230031 Peoples R China Anhui Univ Sci & Technol Huainan 232002 Peoples R China
LidAR-based 3d object detection is essential for autonomous driving. In order to extract information from sparse and unordered point cloud data, pillar-based methods make the data compact and orderly by converting poi... 详细信息
来源: 评论
Occlusion-guided multi-modal fusion for vehicle-infrastructure cooperative 3d object detection
收藏 引用
PATTERN RECOGNITION 2025年 157卷
作者: Chu, Huazhen Liu, Haizhuang Zhuo, Junbao Chen, Jiansheng Ma, Huimin Univ Sci & Technol Beijing Sch Comp & Commun Engn Beijing 100083 Peoples R China China North Artificial Intelligence & Innovat Res Collect Intelligence & Collaborat Lab Beijing Peoples R China
In autonomous driving, leveraging sensor data (e.g. camera, LidAR data) from both the vehicle and the infrastructure significantly improves perception capabilities. However, this integration traditionally results in i... 详细信息
来源: 评论
MSSF: A 4d Radar and Camera Fusion Framework With Multi-Stage Sampling for 3d object detection in Autonomous driving
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2025年 第6期26卷 8641-8656页
作者: Liu, Hongsi Liu, Jun Jiang, Guangfeng Jin, Xin Univ Sci & Technol China Dept Elect Engn & Informat Sci Hefei 230027 Peoples R China Eastern Inst Technol Ningbo Inst Digital Twin Ningbo 315201 Zhejiang Peoples R China
As one of the automotive sensors that have emerged in recent years, 4d millimeter-wave radar has a higher resolution than conventional 3d radar and provides precise elevation measurements. But its point clouds are sti... 详细信息
来源: 评论
LXLv2: Enhanced LidAR Excluded Lean 3d object detection with Fusion of 4d Radar and Camera
收藏 引用
IEEE ROBOTICS ANd AUTOMATION LETTERS 2025年 第3期10卷 2862-2869页
作者: Xiong, Weiyi Zou, Zean Zhao, Qiuchi He, Fengchun Zhu, Bing Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China Continental Autonomous Mobil Shanghai Co Ltd Shanghai 201807 Peoples R China
As the previous state-of-the-art 4d radar-camera fusion-based 3d object detection method, LXL utilizes the predicted image depth distribution maps and radar 3d occupancy grids to assist the sampling-based image view t... 详细信息
来源: 评论
An Efficient Ungrouped Mask Method With two Learnable Parameters for 3d object detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEdIA 2025年 27卷 1003-1017页
作者: Guo, Shuai Shi, Lei Jiang, Xiaoheng Lv, Pei Liu, Qidong Hu, Yazhou Ji, Rongrong Xu, Mingliang Zhengzhou Univ Sch Comp & Artificial Intelligence Zhengzhou 450000 Peoples R China Zhengzhou Univ Engn Res Ctr Intelligent Swarm Syst Zhengzhou 450000 Peoples R China Xiamen Univ Sch Informat Dept Artificial Intelligence Media Analyt & Comp Lab Xiamen 361005 Peoples R China Xiamen Univ Inst Artificial Intelligence Xiamen 361005 Peoples R China Xiamen Univ Fujian Engn Res Ctr Trusted Artificial Intelligenc Xiamen 361005 Peoples R China Peng Cheng Lab Shenzhen Peoples R China
In 3d point cloud-based object detection, attention mechanism in Group-Free (Liu et al.,2021) learns direct relationships between proposals and all seed points, providing each proposal with a global context in the for... 详细信息
来源: 评论
Investigating 3d object detection using stereo camera and LidAR fusion with bird's-eye view representation
收藏 引用
NEUROCOMPUTING 2025年 620卷
作者: Nie, Xin Zhu, Lin He, Zhicheng Cheng, Aiguo Zhong, Shengshi Li, Eric Hunan Univ State Key Lab Adv Design & Manufacture Technol Veh Changsha 410082 Peoples R China Wuling New Energy Automobile Co Ltd Liuzhou 545007 Peoples R China Teesside Univ Sch Comp Engn & Digital Technol Middlesbrough England
Multi-sensor fusion for 3d object detection is a crucial development in autonomous vehicle technology. Current research primarily explores the combination of monocular cameras with LidARs. However, there is a notable ... 详细信息
来源: 评论
Point-Level Fusion and Channel Attention for 3d object detection in Autonomous driving
收藏 引用
SENSORS 2025年 第4期25卷 1097-1097页
作者: Shen, Juntao Fang, Zheng Huang, Jin Southwest Jiaotong Univ Sch Elect Engn Chengdu 611756 Peoples R China Sichuan Inst Land Sci & Technol Sichuan Ctr Satellite Applicat Technol Chengdu 610072 Peoples R China
As autonomous driving technology progresses, LidAR-based 3d object detection has emerged as a fundamental element of environmental perception systems. PointPillars transforms point cloud data into a two-dimensional ps... 详细信息
来源: 评论
dSC3d: deformable Sampling Constraints in Stereo 3d object detection for Autonomous driving
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS ANd SYSTEMS FOR VIdEO TECHNOLOGY 2025年 第3期35卷 2794-2805页
作者: Chen, Jiawei Song, Qi Guo, Wenzhong Huang, Rui Fuzhou Univ Coll Comp & Data Sci Fuzhou 350116 Peoples R China Chinese Univ Hong Kong Shenzhen CUHKSZ Sch Sci & Engn Hong Kong 518172 Guangdong Peoples R China
Camera-based stereo 3d object detection estimates 3d properties of objects with binocular images only, which is a cost-effective solution for autonomous driving. The state-of-the-art methods mainly improve the detecti... 详细信息
来源: 评论
MIM: High-definition Maps Incorporated Multi-View 3d object detection
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2025年 第3期26卷 3989-4001页
作者: Xiao, Jinsheng Wang, Shurui Zhou, Jian Tian, Ziyue Zhang, Hongping Wang, Yuan-Fang Wuhan Univ Sch Elect Informat Wuhan 430072 Peoples R China Wuhan Univ State Key Lab Informat Engn Surveying Mapping & Re Wuhan 430072 Peoples R China Wuhan Univ GNSS Res Ctr Wuhan 430072 Peoples R China Univ Calif Santa Barbara Dept Comp Sci Santa Barbara CA 93106 USA
3d object detection has aroused increasing interest as a crucial component of autonomous driving systems. While recent works have explored various multi-modal fusion methods to enhance accuracy and robustness, fusing ... 详细信息
来源: 评论