咨询与建议

限定检索结果

文献类型

  • 186 篇 期刊文献
  • 109 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 301 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 273 篇 工学
    • 199 篇 计算机科学与技术...
    • 114 篇 电气工程
    • 38 篇 软件工程
    • 36 篇 控制科学与工程
    • 22 篇 仪器科学与技术
    • 19 篇 信息与通信工程
    • 12 篇 电子科学与技术(可...
    • 10 篇 机械工程
    • 6 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 2 篇 光学工程
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
  • 67 篇 理学
    • 42 篇 物理学
    • 16 篇 化学
    • 16 篇 生物学
    • 4 篇 数学
    • 3 篇 地球物理学
    • 2 篇 地理学
    • 1 篇 大气科学
  • 47 篇 医学
    • 47 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 14 篇 管理学
    • 13 篇 管理科学与工程(可...
  • 2 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 1 篇 经济学
  • 1 篇 法学
    • 1 篇 法学
  • 1 篇 农学

主题

  • 301 篇 3d object recogn...
  • 20 篇 pose estimation
  • 19 篇 object recogniti...
  • 18 篇 deep learning
  • 18 篇 feature extracti...
  • 16 篇 point cloud
  • 14 篇 computer vision
  • 12 篇 convolutional ne...
  • 11 篇 three-dimensiona...
  • 11 篇 pattern recognit...
  • 9 篇 occlusion
  • 9 篇 neural network
  • 8 篇 image processing
  • 7 篇 point clouds
  • 7 篇 shape
  • 6 篇 3d pose estimati...
  • 6 篇 laser scanner
  • 6 篇 machine vision
  • 6 篇 6d pose estimati...
  • 6 篇 range image

机构

  • 6 篇 univ chinese aca...
  • 5 篇 natl univ def te...
  • 5 篇 univ western aus...
  • 3 篇 natl res council...
  • 3 篇 chinese acad sci...
  • 3 篇 univ birmingham ...
  • 3 篇 faraday inst qua...
  • 3 篇 fraunhofer inst ...
  • 3 篇 zhongshan univ d...
  • 3 篇 stanford univ st...
  • 3 篇 mid sweden univ ...
  • 2 篇 kfupm ctr intell...
  • 2 篇 bnrist peoples r...
  • 2 篇 zhongshan univ d...
  • 2 篇 wuhan univ sch r...
  • 2 篇 univ aveiro dept...
  • 2 篇 carnegie mellon ...
  • 2 篇 univ aveiro ieet...
  • 2 篇 kfupm dept infor...
  • 2 篇 jouf univ coll c...

作者

  • 8 篇 bennamoun mohamm...
  • 7 篇 cazorla miguel
  • 5 篇 sohel ferdous
  • 5 篇 guo yulan
  • 5 篇 xiong yg
  • 4 篇 wan jianwei
  • 4 篇 kasaei s. hamidr...
  • 4 篇 joshi piyush
  • 4 篇 stolkin rustam
  • 4 篇 rastegarpanah al...
  • 4 篇 ridao pere
  • 4 篇 himri khadidja
  • 4 篇 orts-escolano se...
  • 4 篇 tian yifei
  • 4 篇 song wei
  • 4 篇 vidal joel
  • 4 篇 gracias nuno
  • 4 篇 lin chyi-yeu
  • 4 篇 zhu feng
  • 4 篇 gomez-donoso fra...

语言

  • 289 篇 英文
  • 10 篇 其他
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=3D Object recognition"
301 条 记 录,以下是1-10 订阅
排序:
Multi-Head Structural Attention-Based Vision Transformer with Sequential Views for 3d object recognition
收藏 引用
APPLIEd SCIENCES-BASEL 2025年 第6期15卷 3230-3230页
作者: Bao, Jianjun Luo, Ke Kou, Qiqi He, Liang Zhao, Guo Tiandi Changzhou Automat Co Ltd Changzhou 213015 Peoples R China China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Peoples R China Beihang Univ Sch Artificial Intelligence Beijing 100191 Peoples R China Beijing HuaHang Inst Radio Measurement Beijing 100013 Peoples R China
Multi-view image classification tasks require the effective extraction of both spatial and temporal features to fully leverage the complementary information across views. In this study, we propose a lightweight yet po... 详细信息
来源: 评论
CFMVOR: Federated Multi-view 3d object recognition Based on Compressed Learning  7th
CFMVOR: Federated Multi-view 3D Object Recognition Based on ...
收藏 引用
7th Chinese Conference on Pattern recognition and Computer Vision
作者: Xiao, di Zhang, Meng Zhang, Maolan Chen, Lvjun Chongqing Univ Chongqing 400044 Peoples R China
In distributed scenarios, the implementation of multi-view 3d object recognition algorithms through federated analytics (FA) frequently results in communication costs induced by feature aggregation that significantly ... 详细信息
来源: 评论
3d object recognition and Pose Estimation From Point Cloud Using Stably Observed Point Pair Feature
收藏 引用
IEEE ACCESS 2020年 8卷 44335-44345页
作者: Li, deping Wang, Hanyun Liu, Ning Wang, Xiaoming Xu, Jin Jinan Univ Coll Informat Sci & Technol Guangzhou 510632 Guangdong Peoples R China Jinan Univ Robot Res Inst Guangzhou 510632 Guangdong Peoples R China Informat Engn Univ Inst Surveying & Mapping Zhengzhou 450000 Henan Peoples R China
recognition and pose estimation from 3d free-form objects is a key step for autonomous robotic manipulation. Recently, the point pair features (PPF) voting approach has been shown to be effective for simultaneous obje... 详细信息
来源: 评论
3d object recognition method with multiple feature extraction from LidAR point clouds
收藏 引用
JOURNAL OF SUPERCOMPUTING 2019年 第8期75卷 4430-4442页
作者: Tian, Yifei Song, Wei Sun, Su Fong, Simon Zou, Shuanghui North China Univ Technol 5 Jinyuanzhuang Rd Beijing 100144 Peoples R China Univ Macau Dept Comp & Informat Sci Taipa 999078 Macau Peoples R China Beijing Key Lab Urban Intelligent Traff Control T Beijing 100144 Peoples R China
during autonomous driving, fast and accurate object recognition supports environment perception for local path planning of unmanned ground vehicles. Feature extraction and object recognition from large-scale 3d point ... 详细信息
来源: 评论
3d object recognition using deep learning for automatically generating semantic BIM data
收藏 引用
AUTOMATION IN CONSTRUCTION 2024年 162卷
作者: Rogage, Kay doukari, Omar Northumbria Univ Fac Engn & Environm Newcastle Upon Tyne NE1 8ST England
The successful reuse of Building Information Model (BIM) data is reliant on the use of clearly defined objects. File formats such as the Industry Foundation Classes (IFC) along with classification systems offer approa... 详细信息
来源: 评论
3d object recognition based on pairwise Multi-view Convolutional Neural Networks
收藏 引用
JOURNAL OF VISUAL COMMUNICATION ANd IMAGE REPRESENTATION 2018年 56卷 305-315页
作者: Gao, Z. Wang, d. Y. Xue, Y. B. Xu, G. P. Zhang, H. Wang, Y. L. Qilu Univ Technol Shandong Acad Sci Shandong Artificial Intelligence Inst Jinan 250014 Shandong Peoples R China Natl Supercomp Ctr Jinan Shandong Comp Sci Ctr Jinan 250014 Shandong Peoples R China Tianjin Univ Technol Minist Educ Key Lab Comp Vis & Syst Tianjin 300384 Peoples R China Tianjin Univ Technol Tianjin Key Lab Intelligence Comp & Novel Softwar Tianjin 300384 Peoples R China
With the development of 3d sensors, it will be much easier for us to obtain 3d models, which is prevailing in our future daily life, but up to now, although many 3d object recognition algorithms have been proposed, th... 详细信息
来源: 评论
3d object recognition using scale-invariant features
收藏 引用
VISUAL COMPUTER 2019年 第1期35卷 71-84页
作者: Lim, Jeonghun Lee, Kunwoo Seoul Natl Univ Inst Engn Res Sch Mech Engn Seoul South Korea
As 3d scanning technology develops, it becomes easier to acquire various 3d surface data;thus, there is a growing need for 3d data registration and recognition technology. Many existing studies use local descriptors u... 详细信息
来源: 评论
3d object recognition in cluttered environments by segment-based stereo vision
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2002年 第1期46卷 5-23页
作者: Sumi, Y Kawai, Y Yoshimi, T Tomita, F Natl Inst Adv Ind Sci & Technol Intelligent Syst Inst AIST Tsukuba Cent 2 Tsukuba Ibaraki 3058568 Japan
We propose a new method for 3d object recognition which uses segment-based stereo vision. An object is identified in a cluttered environment and its position and orientation (6 dof) are determined accurately enabling ... 详细信息
来源: 评论
3d object recognition and classification: a systematic literature review
收藏 引用
PATTERN ANALYSIS ANd APPLICATIONS 2019年 第4期22卷 1243-1292页
作者: Carvalho, L. E. von Wangenheim, A. Univ Fed Santa Catarina Grad Program Comp Sci Florianopolis SC Brazil Univ Fed Santa Catarina Natl Brazilian Inst Digital Convergence Image Proc & Comp Graph Lab Florianopolis SC Brazil
In this paper, we present a systematic literature review concerning 3d object recognition and classification. We cover articles published between 2006 and 2016 available in three scientific databases (Sciencedirect, I... 详细信息
来源: 评论
3d object recognition from range images using transform invariant object representation
收藏 引用
ELECTRONICS LETTERS 2010年 第22期46卷 1499-U39页
作者: Akagunduz, E. Ulusoy, I. Middle E Tech Univ Elect & Elect Engn Dept TR-06531 Ankara Turkey
3d object recognition is performed using a scale and orientation invariant feature extraction method and a scale and orientation invariant topological representation. 3d surfaces are represented by sparse, repeatable,... 详细信息
来源: 评论