咨询与建议

限定检索结果

文献类型

  • 249 篇 会议

馆藏范围

  • 249 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 249 篇 工学
    • 249 篇 计算机科学与技术...
    • 83 篇 软件工程

主题

  • 249 篇 3d from multi-vi...
  • 1 篇 dynamic scenes
  • 1 篇 differentiable r...
  • 1 篇 gaussian splatti...
  • 1 篇 depth refinement
  • 1 篇 occupancy foreca...
  • 1 篇 volume rendering
  • 1 篇 neural rendering
  • 1 篇 novel view synth...
  • 1 篇 occupancy predic...
  • 1 篇 human performanc...
  • 1 篇 compact gaussian...
  • 1 篇 mesh
  • 1 篇 surface reconstr...
  • 1 篇 depth completion

机构

  • 13 篇 zhejiang univ pe...
  • 12 篇 chinese univ hon...
  • 10 篇 tech univ munich...
  • 9 篇 univ hong kong p...
  • 8 篇 shanghai ai lab ...
  • 7 篇 univ sci & techn...
  • 7 篇 shanghai jiao to...
  • 7 篇 simon fraser uni...
  • 7 篇 zhejiang univ st...
  • 6 篇 univ toronto on
  • 6 篇 smartmore people...
  • 6 篇 tsinghua univ pe...
  • 5 篇 carnegie mellon ...
  • 5 篇 huawei noahs ark...
  • 5 篇 lund univ lund
  • 4 篇 peking univ peop...
  • 4 篇 tsinghua univ sc...
  • 4 篇 tsinghua univ de...
  • 4 篇 wayne state univ...
  • 4 篇 australian natl ...

作者

  • 7 篇 zhou xiaowei
  • 6 篇 niessner matthia...
  • 6 篇 jia jiaya
  • 6 篇 peng sida
  • 6 篇 bao hujun
  • 5 篇 tagliasacchi and...
  • 5 篇 guibas leonidas
  • 5 篇 liu yu-shen
  • 4 篇 han xiaoguang
  • 4 篇 yao ting
  • 4 篇 qi xiaojuan
  • 4 篇 dai angela
  • 4 篇 theobalt christi...
  • 4 篇 han zhizhong
  • 4 篇 larsson viktor
  • 3 篇 liu yuan
  • 3 篇 lu cewu
  • 3 篇 pollefeys marc
  • 3 篇 chen yukang
  • 3 篇 kim changil

语言

  • 249 篇 英文
检索条件"主题词=3D from Multi-view and Sensors"
249 条 记 录,以下是61-70 订阅
排序:
IterativePFN: True Iterative Point Cloud Filtering
IterativePFN: True Iterative Point Cloud Filtering
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Edirimuni, dasith de Silva Lu, Xuequan Shao, Zhiwen Li, Gang Robles-Kelly, Antonio He, Ying Deakin Univ Sch Informat Technol Geelong Vic Australia China Univ Min & Technol Sch Comp Sci & Technol Beijing Peoples R China Nanyang Technol Univ Sch Comp Sci & Engn Singapore Singapore Def Sci & Technol Grp Edinburgh Australia
The quality of point clouds is often limited by noise introduced during their capture process. Consequently, a fundamental 3d vision task is the removal of noise, known as point cloud filtering or denoising. State-of-... 详细信息
来源: 评论
Shakes on a Plane: Unsupervised depth Estimation from Unstabilized Photography
Shakes on a Plane: Unsupervised Depth Estimation from Unstab...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Chugunov, Ilya Zhang, Yuxuan Heide, Felix Princeton Univ Princeton NJ 08544 USA
Modern mobile burst photography pipelines capture and merge a short sequence of frames to recover an enhanced image, but often disregard the 3d nature of the scene they capture, treating pixel motion between images as... 详细信息
来源: 评论
Neural Fields meet Explicit Geometric Representations for Inverse Rendering of Urban Scenes
Neural Fields meet Explicit Geometric Representations for In...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Wang, Zian Shen, Tianchang Gao, Jun Huang, Shengyu Munkberg, Jacob Hasselgren, Jon Gojcic, Zan Chen, Wenzheng Fidler, Sanja NVIDIA Santa Clara CA 95050 USA Univ Toronto Toronto ON M5S 1A1 Canada Vector Inst Ameerpet India Swiss Fed Inst Technol Zurich Switzerland
Reconstruction and intrinsic decomposition of scenes from captured imagery would enable many applications such as relighting and virtual object insertion. Recent NeRF based methods achieve impressive fidelity of 3d re... 详细信息
来源: 评论
PVO: Panoptic Visual Odometry
PVO: Panoptic Visual Odometry
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Ye, Weicai Lan, Xinyue Chen, Shuo Ming, Yuhang Yu, Xingyuan Bao, Hujun Cui, Zhaopeng Zhang, Guofeng Zhejiang Univ State Key Lab CAD&CG Hangzhou Zhejiang Peoples R China ZJU SenseTime Joint Lab 3D Vis Hangzhou Zhejiang Peoples R China Hangzhou Dianzi Univ Sch Comp Sci Hangzhou Peoples R China Univ Bristol VIL Bristol Avon England
We present PVO, a novel panoptic visual odometry framework to achieve more comprehensive modeling of the scene motion, geometry, and panoptic segmentation information. Our PVO models visual odometry (VO) and video pan... 详细信息
来源: 评论
Neural Part Priors: Learning to Optimize Part-Based Object Completion in RGB-d Scans
Neural Part Priors: Learning to Optimize Part-Based Object C...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Bokhovkin, Aleksei dai, Angela Tech Univ Munich Munich Germany
3d scene understanding has seen significant advances in recent years, but has largely focused on object understanding in 3d scenes with independent per-object predictions. We thus propose to learn Neural Part Priors (... 详细信息
来源: 评论
RIAV-MVS: Recurrent-Indexing an Asymmetric Volume for multi-view Stereo
RIAV-MVS: Recurrent-Indexing an Asymmetric Volume for Multi-...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Cai, Changjiang Ji, Pan Yan, Qingan Xu, Yi InnoPeak Technol Inc OPPO US Res Ctr Palo Alto CA 94303 USA
This paper presents a learning-based method for multi-view depth estimation from posed images. Our core idea is a "learning-to-optimize" paradigm that iteratively indexes a plane-sweeping cost volume and reg... 详细信息
来源: 评论
Self-supervised Super-plane for Neural 3d Reconstruction
Self-supervised Super-plane for Neural 3D Reconstruction
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Ye, Botao Liu, Sifei Li, Xueting Yang, Ming-Hsuan Univ Chinese Acad Sci Beijing Peoples R China NVIDIA Santa Clara CA USA Univ Calif Merced Merced CA USA Yonsei Univ Seoul South Korea
Neural implicit surface representation methods show impressive reconstruction results but struggle to handle texture-less planar regions that widely exist in indoor scenes. Existing approaches addressing this leverage... 详细信息
来源: 评论
Unsupervised deep Asymmetric Stereo Matching with Spatially-Adaptive Self-Similarity
Unsupervised Deep Asymmetric Stereo Matching with Spatially-...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Song, Taeyong Kim, Sunok Sohn, Kwanghoon Hyundai Motor Co R&D Div Seoul South Korea Korea Aerosp Univ Goyang South Korea Yonsei Univ Seoul South Korea Korea Inst Sci & Technol KIST Seoul South Korea
Unsupervised stereo matching has received a lot of attention since it enables the learning of disparity estimation without ground-truth data. However, most of the unsupervised stereo matching algorithms assume that th... 详细信息
来源: 评论
Four-view Geometry with Unknown Radial distortion
Four-view Geometry with Unknown Radial Distortion
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Hruby, Petr Korotynskiy, Viktor duff, Timothy Oeding, Luke Pollefeys, Marc Pajdla, Tomas Larsson, Viktor Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland Czech Tech Univ CIIRC Prague Czech Republic Univ Washington Seattle WA USA Auburn Univ Auburn AL USA Lund Univ Lund Sweden
We present novel solutions to previously unsolved problems of relative pose estimation from images whose calibration parameters, namely focal lengths and radial distortion, are unknown. Our approach enables metric rec... 详细信息
来源: 评论
BAEFormer: Bi-directional and Early Interaction Transformers for Bird's Eye view Semantic Segmentation
BAEFormer: Bi-directional and Early Interaction Transformers...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Pan, Cong He, Yonghao Peng, Junran Zhang, Qian Sui, Wei Zhang, Zhaoxiang Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing Peoples R China Univ Chinese Acad Sci Sch Future Technol Beijing Peoples R China Horizon Robot Beijing Peoples R China Huawei Inc Shenzhen Guangdong Peoples R China HKISI CAS Ctr Artificial Intelligence & Robot Beijing Peoples R China
Bird's Eye view (BEV) semantic segmentation is a critical task in autonomous driving. However, existing Transformer-based methods confront difficulties in transforming Perspective view (PV) to BEV due to their uni... 详细信息
来源: 评论