咨询与建议

限定检索结果

文献类型

  • 249 篇 会议

馆藏范围

  • 249 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 249 篇 工学
    • 249 篇 计算机科学与技术...
    • 83 篇 软件工程

主题

  • 249 篇 3d from multi-vi...
  • 1 篇 dynamic scenes
  • 1 篇 differentiable r...
  • 1 篇 gaussian splatti...
  • 1 篇 depth refinement
  • 1 篇 occupancy foreca...
  • 1 篇 volume rendering
  • 1 篇 neural rendering
  • 1 篇 novel view synth...
  • 1 篇 occupancy predic...
  • 1 篇 human performanc...
  • 1 篇 compact gaussian...
  • 1 篇 mesh
  • 1 篇 surface reconstr...
  • 1 篇 depth completion

机构

  • 13 篇 zhejiang univ pe...
  • 12 篇 chinese univ hon...
  • 10 篇 tech univ munich...
  • 9 篇 univ hong kong p...
  • 8 篇 shanghai ai lab ...
  • 7 篇 univ sci & techn...
  • 7 篇 shanghai jiao to...
  • 7 篇 simon fraser uni...
  • 7 篇 zhejiang univ st...
  • 6 篇 univ toronto on
  • 6 篇 smartmore people...
  • 6 篇 tsinghua univ pe...
  • 5 篇 carnegie mellon ...
  • 5 篇 huawei noahs ark...
  • 5 篇 lund univ lund
  • 4 篇 peking univ peop...
  • 4 篇 tsinghua univ sc...
  • 4 篇 tsinghua univ de...
  • 4 篇 wayne state univ...
  • 4 篇 australian natl ...

作者

  • 7 篇 zhou xiaowei
  • 6 篇 niessner matthia...
  • 6 篇 jia jiaya
  • 6 篇 peng sida
  • 6 篇 bao hujun
  • 5 篇 tagliasacchi and...
  • 5 篇 guibas leonidas
  • 5 篇 liu yu-shen
  • 4 篇 han xiaoguang
  • 4 篇 yao ting
  • 4 篇 qi xiaojuan
  • 4 篇 dai angela
  • 4 篇 theobalt christi...
  • 4 篇 han zhizhong
  • 4 篇 larsson viktor
  • 3 篇 liu yuan
  • 3 篇 lu cewu
  • 3 篇 pollefeys marc
  • 3 篇 chen yukang
  • 3 篇 kim changil

语言

  • 249 篇 英文
检索条件"主题词=3D from multi-view and sensors"
249 条 记 录,以下是201-210 订阅
排序:
Adaptive Annealing for Robust Geometric Estimation
Adaptive Annealing for Robust Geometric Estimation
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Sidhartha, Chitturi Manam, Lalit Govindu, Venu Madhav Indian Inst Sci Bengaluru 560012 India
Geometric estimation problems in vision are often solved via minimization of statistical loss functions which account for the presence of outliers in the observations. The corresponding energy landscape often has many... 详细信息
来源: 评论
FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency Regularization
FreeNeRF: Improving Few-shot Neural Rendering with Free Freq...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yang, Jiawei Pavone, Marco Wang, Yue UC Los Angeles Los Angeles CA 90095 USA Stanford Univ Nvidia Res Stanford CA USA Nvidia Res Santa Clara CA USA
Novel view synthesis with sparse inputs is a challenging problem for neural radiance fields (NeRF). Recent efforts alleviate this challenge by introducing external supervision, such as pre-trained models and extra dep... 详细信息
来源: 评论
F2-NeRF: Fast Neural Radiance Field Training with Free Camera Trajectories
F<SUP>2</SUP>-NeRF: Fast Neural Radiance Field Training with...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Wang, Peng Liu, Yuan Chen, Zhaoxi Liu, Lingjie Liu, Ziwei Kornura, Taku Theobalt, Christian Wang, Wenping Univ Hong Kong Hong Kong Peoples R China Nanyang Technol Univ SLab Singapore Singapore Max Planck Inst Informat Saarbrucken Germany Texas A&M Univ College Stn TX 77843 USA
This paper presents a novel grid-based NeRF called F-2-NeRF (Fast-Free-NeRF) for novel view synthesis, which enables arbitrary input camera trajectories and only costs a few minutes for training. Existing fast grid-ba... 详细信息
来源: 评论
Panoptic Compositional Feature Field for Editable Scene Rendering with Network-Inferred Labels via Metric Learning
Panoptic Compositional Feature Field for Editable Scene Rend...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Cheng, Xinhua Wu, Yanmin Jia, Mengxi Wang, Qian Zhang, Jian Peking Univ Shenzhen Grad Sch Beijing Peoples R China Peking Univ Sch Software & Microelect Beijing Peoples R China
despite neural implicit representations demonstrating impressive high-quality view synthesis capacity, decomposing such representations into objects for instance-level editing is still challenging. Recent works learn ... 详细信息
来源: 评论
Learning Neural duplex Radiance Fields for Real-Time view Synthesis
Learning Neural Duplex Radiance Fields for Real-Time View Sy...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Wan, Ziyu Richardt, Christian Bozic, Aljaz Li, Chao Rengarajan, Vijay Nam, Sconghycon Xiang, Xiaoyu Li, Tuotuo Zhu, Bo Ranjan, Rakesh Liao, Jing City Univ Hong Kong Hong Kong Peoples R China Meta Real Labs Irvine CA USA
Neural radiance fields (NeRFs) enable novel-view synthesis with unprecedented visual quality. However, to render photorealistic images, NeRFs require hundreds of deep multilayer perceptron (MLP) evaluations - for each... 详细信息
来源: 评论
GINA-3d: Learning to Generate Implicit Neural Assets in the Wild
GINA-3D: Learning to Generate Implicit Neural Assets in the ...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Shen, Bokui Yan, Xinchen Qi, Charles R. Najibi, Mahyar deng, Boyang Guibas, Leonidas Zhou, Yin Anguelov, dragomir Stanford Univ Stanford CA 94305 USA Waymo LLC Mountain View CA USA Google Mountain View CA USA
Modeling the 3d world from sensor data for simulation is a scalable way of developing testing and validation environments for robotic learning problems such as autonomous driving. However, manually creating or recreat... 详细信息
来源: 评论
Neural Scene Chronology
Neural Scene Chronology
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Lin, Haotong Wang, Qianqian Cai, Ruojin Peng, Sida Averbuch-Elor, Hadar Zhou, Xiaowei Snavely, Noah Zhejiang Univ Hangzhou Zhejiang Peoples R China Cornell Univ Ithaca NY 14853 USA Tel Aviv Univ Tel Aviv Israel
In this work, we aim to reconstruct a time-varying 3d model, capable of rendering photo-realistic renderings with independent control of viewpoint, illumination, and time, from Internet photos of large-scale landmarks... 详细信息
来源: 评论
Bi-LRFusion: Bi-directional LidAR-Radar Fusion for 3d dynamic Object detection
Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynami...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Wang, Yingjie deng, Jiajun Li, Yao Hu, Jinshui Liu, Cong Zhang, Yu Ji, Jianmin Ouyang, Wanli Zhang, Yanyong Univ Sci & Technol China Hefei Peoples R China Univ Sydney Camperdown NSW Australia 3iFLYTEK Hefei Peoples R China Shanghai AI Lab Shanghai Peoples R China
LidAR and Radar are two complementary sensing approaches in that LidAR specializes in capturing an object&#39;s 3d shape while Radar provides longer detection ranges as well as velocity hints. Though seemingly natural... 详细信息
来源: 评论
Learning Adaptive dense Event Stereo from the Image domain
Learning Adaptive Dense Event Stereo from the Image Domain
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Cho, Hoonhee Cho, Jegyeong Yoon, Kuk-Jin Korea Adv Inst Sci & Technol Visual Intelligence Lab Daejeon South Korea
Recently, event-based stereo matching has been studied due to its robustness in poor light conditions. However, existing event-based stereo networks suffer severe performance degradation when domains shift. Unsupervis... 详细信息
来源: 评论
NeRFLight: Fast and Light Neural Radiance Fields using a Shared Feature Grid
NeRFLight: Fast and Light Neural Radiance Fields using a Sha...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Rivas-Manzaneque, Fernando Sierra-Acosta, Jorge Penate-Sanchez, Adrian Moreno-Noguer, Francesc Ribeiro, Angela Arquimea Res Ctr San Cristobal la Laguna Santa Cruz De T Spain Univ Politecn Madrid Madrid Spain Univ Las Palmas Gran Canaria IUSIANI Las Palmas Gran Canaria Spain CSIC UPM Ctr Automat & Robot Madrid Spain CSIC UPC Inst Robot & Informat Ind Barcelona Spain
While original Neural Radiance Fields (NeRF) have shown impressive results in modeling the appearance of a scene with compact MLP architectures, they are not able to achieve real-time rendering. This has been recently... 详细信息
来源: 评论