咨询与建议

限定检索结果

文献类型

  • 249 篇 会议

馆藏范围

  • 249 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 249 篇 工学
    • 249 篇 计算机科学与技术...
    • 83 篇 软件工程

主题

  • 249 篇 3d from multi-vi...
  • 1 篇 dynamic scenes
  • 1 篇 differentiable r...
  • 1 篇 gaussian splatti...
  • 1 篇 depth refinement
  • 1 篇 occupancy foreca...
  • 1 篇 volume rendering
  • 1 篇 neural rendering
  • 1 篇 novel view synth...
  • 1 篇 occupancy predic...
  • 1 篇 human performanc...
  • 1 篇 compact gaussian...
  • 1 篇 mesh
  • 1 篇 surface reconstr...
  • 1 篇 depth completion

机构

  • 13 篇 zhejiang univ pe...
  • 12 篇 chinese univ hon...
  • 10 篇 tech univ munich...
  • 9 篇 univ hong kong p...
  • 8 篇 shanghai ai lab ...
  • 7 篇 univ sci & techn...
  • 7 篇 shanghai jiao to...
  • 7 篇 simon fraser uni...
  • 7 篇 zhejiang univ st...
  • 6 篇 univ toronto on
  • 6 篇 smartmore people...
  • 6 篇 tsinghua univ pe...
  • 5 篇 carnegie mellon ...
  • 5 篇 huawei noahs ark...
  • 5 篇 lund univ lund
  • 4 篇 peking univ peop...
  • 4 篇 tsinghua univ sc...
  • 4 篇 tsinghua univ de...
  • 4 篇 wayne state univ...
  • 4 篇 australian natl ...

作者

  • 7 篇 zhou xiaowei
  • 6 篇 niessner matthia...
  • 6 篇 jia jiaya
  • 6 篇 peng sida
  • 6 篇 bao hujun
  • 5 篇 tagliasacchi and...
  • 5 篇 guibas leonidas
  • 5 篇 liu yu-shen
  • 4 篇 han xiaoguang
  • 4 篇 yao ting
  • 4 篇 qi xiaojuan
  • 4 篇 dai angela
  • 4 篇 theobalt christi...
  • 4 篇 han zhizhong
  • 4 篇 larsson viktor
  • 3 篇 liu yuan
  • 3 篇 lu cewu
  • 3 篇 pollefeys marc
  • 3 篇 chen yukang
  • 3 篇 kim changil

语言

  • 249 篇 英文
检索条件"主题词=3D from multi-view and sensors"
249 条 记 录,以下是231-240 订阅
排序:
Neural Kernel Surface Reconstruction
Neural Kernel Surface Reconstruction
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Huang, Jiahui Gojcic, Zan Atzmon, Matan Litany, Or Fidler, Sanja Williams, Francis NVIDIA Santa Clara CA 78717 USA Univ Toronto Toronto ON Canada Vector Inst New York NY USA
We present a novel method for reconstructing a 3d implicit surface from a large-scale, sparse, and noisy point cloud. Our approach builds upon the recently introduced Neural Kernel Fields (NKF) [58] representation. It... 详细信息
来源: 评论
Unsupervised Inference of Signed distance Functions from Single Sparse Point Clouds without Learning Priors
Unsupervised Inference of Signed Distance Functions from Sin...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Chen, Chao Liu, Yu-Shen Han, Zhizhong Tsinghua Univ Sch Software BNRist Beijing Peoples R China Wayne State Univ Dept Comp Sci Detroit MI USA
It is vital to infer signed distance functions (SdFs) from 3d point clouds. The latest methods rely on generalizing the priors learned from large scale supervision. However, the learned priors do not generalize well t... 详细信息
来源: 评论
Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton discovery from Sparse Image Ensemble
Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Disc...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yao, Chun-Han Hung, Wei-Chih Li, Yuanzhen Rubinstein, Michael Yang, Ming-Hsuan Jampani, Varun UC Merced Merced CA 95343 USA Waymo Mountain View CA USA Google Res Mountain View CA USA Yonsei Univ Seoul South Korea
Automatically estimating 3d skeleton, shape, camera viewpoints, and part articulation from sparse in-the-wild image ensembles is a severely under-constrained and challenging problem. Most prior methods rely on large-s... 详细信息
来源: 评论
3d Semantic Segmentation in the Wild: Learning Generalized Models for Adverse-Condition Point Clouds
3D Semantic Segmentation in the Wild: Learning Generalized M...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Xiao, Aoran Huang, Jiaxing Xuan, Weihao Ren, Ruijie Liu, Kangcheng Guan, dayan El Saddik, Abdulmotaleb Lu, Shijian Xing, Eric Nanyang Technol Univ Singapore Singapore Waseda Univ Tokyo Japan Tech Univ Denmark Lyngby Denmark Mohamed bin Zayed Univ Artificial Intelligence Abu Dhabi U Arab Emirates Carnegie Mellon Univ Pittsburgh PA USA Univ Ottawa Ottawa ON Canada
Robust point cloud parsing under all-weather conditions is crucial to level-5 autonomy in autonomous driving. However, how to learn a universal 3d semantic segmentation (3dSS) model is largely neglected as most existi... 详细信息
来源: 评论
Starting from Non-Parametric Networks for 3d Point Cloud Analysis
Starting from Non-Parametric Networks for 3D Point Cloud Ana...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Zhang, Renrui Wang, Liuhui Wang, Yali Gao, Peng Li, Hongsheng Shi, Jianbo CUHK MMLab Hong Kong Peoples R China Peking Univ Beijing Peoples R China Univ Penn Philadelphia PA 19104 USA Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China Shanghai Artificial Intelligence Lab Shanghai Peoples R China Heisenberg Robot Shenzhen Peoples R China
We present a Non-parametric Network for 3d point cloud analysis, Point-NN, which consists of purely non-learnable components: farthest point sampling (FPS), k-nearest neighbors (k-NN), and pooling operations, with tri... 详细信息
来源: 评论
MACARONS: Mapping And Coverage Anticipation with RGB Online Self-Supervision
MACARONS: Mapping And Coverage Anticipation with RGB Online ...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Guedon, Antoine Monnier, Tom Monasse, Pascal Lepetit, Vincent Univ Gustave Eiffel CNRS LIGM Ecole Ponts Champs Sur Marne France
We introduce a method that simultaneously learns to explore new large environments and to reconstruct them in 3d from color images only. This is closely related to the Next Best view problem (NBV), where one has to id... 详细信息
来源: 评论
PersonNeRF : Personalized Reconstruction from Photo Collections
PersonNeRF : Personalized Reconstruction from Photo Collecti...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Weng, Chung-Yi Srinivasan, Pratul P. Curless, Brian Kemelmacher-Shlizerman, Ira Univ Washington Seattle WA 98195 USA Google Res Sunnyvale CA USA
We present PersonNeRF, a method that takes a collection of photos of a subject (e.g. Roger Federer) captured across multiple years with arbitrary body poses and appearances, and enables rendering the subject with arbi... 详细信息
来源: 评论
K-Planes: Explicit Radiance Fields in Space, Time, and Appearance
K-Planes: Explicit Radiance Fields in Space, Time, and Appea...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Fridovich-Keil, Sara Meanti, Giacomo Warburg, Frederik Rahbaek Recht, Benjamin Kanazawa, Angjoo Univ Calif Berkeley Berkeley CA 94720 USA Ist Italiano Tecnol Genoa Italy Tech Univ Denmark Lyngby Denmark
We introduce k-planes, a white-box model for radiance fields in arbitrary dimensions. Our model uses ((d)(2)) ("d-choose-2") planes to represent a d-dimensional scene, providing a seamless way to go from sta... 详细信息
来源: 评论
Poly-PC: A Polyhedral Network for multiple Point Cloud Tasks at Once
Poly-PC: A Polyhedral Network for Multiple Point Cloud Tasks...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Xie, Tao Wang, Shiguang Wang, Ke Yang, Linqi Jiang, Zhiqiang Zhang, Xingcheng dai, Kun Li, Ruifeng Cheng, Jian Harbin Inst Technol Harbin Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China SenseTime Res Beijing Peoples R China
In this work, we show that it is feasible to perform multiple tasks concurrently on point cloud with a straightforward yet effective multi-task network. Our framework, Poly-PC, tackles the inherent obstacles (e.g., di... 详细信息
来源: 评论
Generating Part-Aware Editable 3d Shapes without 3d Supervision
Generating Part-Aware Editable 3D Shapes without 3D Supervis...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Tertikas, Konstantinos Paschalidou, despoina Pan, Boxiao Park, Jeong Joon Uy, Mikaela Angelina Emiris, Ioannis Avrithis, Yannis Guibas, Leonidas Natl & Kapodistrian Univ Athens Athens Greece Stanford Univ Stanford CA USA Athena RC Maroussi Greece lnst Adv Res Artificial Intelligence IARAI Vienna Austria
Impressive progress in generative models and implicit representations gave rise to methods that can generate 3d shapes of high quality. However, being able to locally control and edit shapes is another essential prope... 详细信息
来源: 评论