咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献
  • 3 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6 篇 工学
    • 3 篇 计算机科学与技术...
    • 3 篇 生物医学工程(可授...
    • 2 篇 电气工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 动力工程及工程热...
    • 1 篇 信息与通信工程
    • 1 篇 化学工程与技术
  • 2 篇 医学
    • 2 篇 特种医学
  • 1 篇 理学
    • 1 篇 数学
    • 1 篇 统计学(可授理学、...

主题

  • 8 篇 3d image data
  • 3 篇 deep learning
  • 2 篇 biomedical imagi...
  • 1 篇 cut plane
  • 1 篇 slice by slice m...
  • 1 篇 connected compon...
  • 1 篇 scientific resea...
  • 1 篇 learning rate
  • 1 篇 osg
  • 1 篇 generative adver...
  • 1 篇 3d obrazové data
  • 1 篇 seg3d open sourc...
  • 1 篇 spherical harmon...
  • 1 篇 pulmonary valve
  • 1 篇 image segmentati...
  • 1 篇 openscenegraph
  • 1 篇 cardiac valve an...
  • 1 篇 fluorescence mic...
  • 1 篇 particle detecti...
  • 1 篇 tricuspid valve

机构

  • 1 篇 bina nusantara u...
  • 1 篇 univ airlangga f...
  • 1 篇 univ oxford inst...
  • 1 篇 heidelberg univ ...
  • 1 篇 univ oxford card...
  • 1 篇 univ oxford well...
  • 1 篇 ruhr univ bochum...
  • 1 篇 univ oxford comp...
  • 1 篇 psl res univ ctr...
  • 1 篇 toronto metropol...
  • 1 篇 heidelberg univ ...
  • 1 篇 st petersburg st...
  • 1 篇 univ oxford dept...
  • 1 篇 tech univ darmst...
  • 1 篇 brno university ...
  • 1 篇 univ airlangga f...
  • 1 篇 zhaw winterthur ...
  • 1 篇 heidelberg univ ...
  • 1 篇 ulm univ inst st...
  • 1 篇 inst teknol sepu...

作者

  • 2 篇 rohr k.
  • 1 篇 quinn t. alexand...
  • 1 篇 hales patrick
  • 1 篇 schmidt v.
  • 1 篇 sarno riyanarto
  • 1 篇 schneider juerge...
  • 1 篇 jafari sanaz moh...
  • 1 篇 chagin v. o.
  • 1 篇 schermelleh l.
  • 1 篇 casero ramon
  • 1 篇 kučiš michal
  • 1 篇 kohl peter
  • 1 篇 abdallah b.
  • 1 篇 bollensdorff chr...
  • 1 篇 spilger r.
  • 1 篇 pangestu gusti
  • 1 篇 meyer j.
  • 1 篇 susilo rahadian ...
  • 1 篇 dong x.
  • 1 篇 willot f.

语言

  • 8 篇 英文
检索条件"主题词=3D image data"
8 条 记 录,以下是1-10 订阅
排序:
Cyclical Learning Rate Optimization on deep Learning Model for Brain Tumor Segmentation
收藏 引用
IEEE ACCESS 2023年 11卷 119802-119810页
作者: Fajar, Aziz Sarno, Riyanarto Fatichah, Chastine Susilo, Rahadian Indarto Pangestu, Gusti Inst Teknol Sepuluh Nopember Fac Intelligent Elect & Informat Technol Dept Informat Surabaya 60111 Indonesia Univ Airlangga Fac Adv Technol & Multidiscipline Dept Data Sci Technol Surabaya 60115 Indonesia Univ Airlangga Fac Med Dept Neurosurg Surabaya Indonesia Bina Nusantara Univ Sch Comp Sci Jakarta Indonesia
In recent years, deep learning has found widespread applications in tasks such as segmentation and classification. Fine-tuning hyperparameters is crucial to improve performance, with the learning rate being a key para... 详细信息
来源: 评论
Stochastic 3d Modeling of Three-Phase Microstructures for Predicting Transport Properties: A Case Study
收藏 引用
TRANSPORT IN POROUS MEdIA 2019年 第1期128卷 179-200页
作者: Neumann, M. Abdallah, B. Holzer, L. Willot, F. Schmidt, V. Ulm Univ Inst Stochast Helmholtzstr 18 D-89069 Ulm Germany PSL Res Univ Ctr Math Morphol MINES ParisTech Rue St Honore 35 F-77300 Fontainebleau France ZHAW Winterthur Inst Computat Phys Wildbachstr 21 CH-8400 Winterthur Switzerland
We compare two conceptually different stochastic microstructure models, i.e., a graph-based model and a pluri-Gaussian model, that have been introduced to model the transport properties of three-phase microstructures ... 详细信息
来源: 评论
Improved α-GAN architecture for generating 3d connected volumes with an application to radiosurgery treatment planning
收藏 引用
APPLIEd INTELLIGENCE 2023年 第18期53卷 21050-21076页
作者: Jafari, Sanaz Mohammad Cevik, Mucahit Basar, Ayse Toronto Metropolitan Univ 44 Gerrard St E Toronto ON M5B 1G3 Canada
Generative Adversarial Networks (GANs) have gained significant attention in several computer vision tasks for generating high-quality synthetic data. Various medical applications including diagnostic imaging and radia... 详细信息
来源: 评论
Optimal designs for three-dimensional shape analysis with spherical harmonic descriptors
收藏 引用
ANNALS OF STATISTICS 2005年 第6期33卷 2758-2788页
作者: dette, H Melas, VB Pepelyshev, A Ruhr Univ Bochum Fak Mathemat D-44780 Bochum Germany St Petersburg State Univ Dept Math St Petersburg 198904 Russia
We determine optimal designs for some regression models which are frequently used for describing three-dimensional shapes. These models are based on a Fourier expansion of a function defined on the unit sphere in term... 详细信息
来源: 评论
CELL NUCLEI SEGMENTATION USING dEEP HYBRId REPRESENTATION LEARNING FOR 2d ANd 3d MICROSCOPY imageS  21
CELL NUCLEI SEGMENTATION USING DEEP HYBRID REPRESENTATION LE...
收藏 引用
21st IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Meyer, J. dong, X. Rohr, K. Heidelberg Univ Biomed Comp Vision Grp BioQuant IPMB Heidelberg Germany
Cell segmentation is a central task in biomedical image analysis. We introduce a 3d deep neural network for 3d cell nuclei segmentation that performs multi-task learning to generate different representations from 3d m... 详细信息
来源: 评论
Cardiac Valve Annulus Manual Segmentation Using Computer Assisted Visual Feedback in Three-dimensional image data
Cardiac Valve Annulus Manual Segmentation Using Computer Ass...
收藏 引用
32nd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBC 10)
作者: Casero, Ramon Burton, Rebecca A. B. Quinn, T. Alexander Bollensdorff, Christian Hales, Patrick Schneider, Juergen E. Kohl, Peter Grau, Vicente Univ Oxford Comp Lab Computat Biol Grp Wolfson BldgParks Rd Oxford OX1 3QD England Univ Oxford Cardiac Mechano Elect Feedback Lab Dept Physiol Anatomy & Genet Oxford OX1 3PT England Univ Oxford Wellcome Trust Ctr Human Genet Dept Cardiovascular Med Oxford OX3 7BN England Univ Oxford Inst Biomed Engn Dept Engn Sci Oxford OX1 3QD England
Annulus manual segmentation is an important tool for the study of valve anatomy and physiology, for the four main valves of the heart (mitral, tricuspid, aortic and pulmonary). In this paper we review two traditional ... 详细信息
来源: 评论
dEEP NEURAL NETWORK FOR 3d PARTICLE dETECTION IN 3d FLUORESCENCE MICROSCOPY imageS VIA dENSITY MAP REGRESSION  19
DEEP NEURAL NETWORK FOR 3D PARTICLE DETECTION IN 3D FLUORESC...
收藏 引用
19th IEEE International Symposium on Biomedical Imaging (IEEE ISBI)
作者: Spilger, R. Chagin, V. O. Bold, C. S. Schermelleh, L. Muller, U. C. Cardoso, M. C. Rohr, K. Heidelberg Univ Biomed Comp Vis Grp IPMB BioQuant Heidelberg Germany Tech Univ Darmstadt Cell Biol & Epigenet Dept Biol Darmstadt Germany Russian Acad Sci Inst Cytol St Petersburg Russia Heidelberg Univ IPMB Funct Genom Heidelberg Germany Univ Oxford Dept Biochem Micron Adv Bioimaging Unit Oxford England
Automatic detection of particles in fluorescence microscopy images is crucial to analyze cellular processes. We introduce a novel deep learning method for 3d fluorescent particle detection. Instead of pixel-wise binar... 详细信息
来源: 评论
Rozšíření knihovny OpenSceneGraph pro zobrazení 3d obrazových dat v medicíně
Rozšíření knihovny OpenSceneGraph pro zobrazení 3D obra...
收藏 引用
作者: Kučiš, Michal Brno University of Technology
Bakalářská práce popisuje metody pro zobrazen37; 3d obrazov3;ch dat. Součast37; práce je implementace metody, která zobrazuje řez daty.
来源: 评论