咨询与建议

限定检索结果

文献类型

  • 45 篇 期刊文献
  • 25 篇 会议

馆藏范围

  • 70 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 工学
    • 49 篇 计算机科学与技术...
    • 24 篇 生物医学工程(可授...
    • 15 篇 电气工程
    • 7 篇 软件工程
    • 2 篇 机械工程
    • 2 篇 控制科学与工程
    • 2 篇 生物工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 网络空间安全
  • 39 篇 医学
    • 23 篇 特种医学
    • 13 篇 临床医学
    • 12 篇 基础医学(可授医学...
    • 2 篇 医学技术(可授医学...
    • 1 篇 公共卫生与预防医...
    • 1 篇 中西医结合
  • 9 篇 理学
    • 6 篇 生物学
    • 3 篇 物理学
    • 1 篇 数学
    • 1 篇 化学
    • 1 篇 统计学(可授理学、...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 公共管理
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 农学

主题

  • 70 篇 3d medical image...
  • 9 篇 transformer
  • 6 篇 transformers
  • 5 篇 deep learning
  • 5 篇 three-dimensiona...
  • 5 篇 image segmentati...
  • 5 篇 semi-supervised ...
  • 4 篇 biomedical imagi...
  • 4 篇 convolutional ne...
  • 3 篇 vision transform...
  • 3 篇 self-supervised ...
  • 3 篇 lightweight
  • 3 篇 cnn
  • 3 篇 3d u-net
  • 3 篇 lightweight netw...
  • 3 篇 sparse annotatio...
  • 2 篇 brats
  • 2 篇 variational auto...
  • 2 篇 3d zernike descr...
  • 2 篇 task analysis

机构

  • 3 篇 zhejiang univ co...
  • 2 篇 beijing inst tec...
  • 2 篇 zhejiang lab res...
  • 2 篇 guangdong key la...
  • 2 篇 univ shanghai sc...
  • 2 篇 college of elect...
  • 2 篇 ningxia univ sch...
  • 2 篇 jiangxi univ sci...
  • 2 篇 cranfield univ s...
  • 2 篇 sir run run shaw...
  • 1 篇 ocean univ china...
  • 1 篇 guangdong prov p...
  • 1 篇 nanjing univ nat...
  • 1 篇 china acad chine...
  • 1 篇 jiangnan univ sc...
  • 1 篇 tianjin univ com...
  • 1 篇 shanghai ai lab ...
  • 1 篇 mardan univ engn...
  • 1 篇 tongji univ ctr ...
  • 1 篇 hong kong polyte...

作者

  • 2 篇 flitton greg t.
  • 2 篇 zhang lei
  • 2 篇 wei siyi
  • 2 篇 tong ruofeng
  • 2 篇 sarker ruhul
  • 2 篇 li zheng
  • 2 篇 huang guoheng
  • 2 篇 zheng jian
  • 2 篇 lin lanfen
  • 2 篇 zhang dingwen
  • 2 篇 megherbi najla
  • 2 篇 zhang jinhui
  • 2 篇 breckon toby p.
  • 2 篇 yu xiangchun
  • 2 篇 xia yong
  • 2 篇 chen qingqing
  • 2 篇 yang fan
  • 2 篇 xie yutong
  • 2 篇 essam daryl
  • 2 篇 wang bo

语言

  • 67 篇 英文
  • 2 篇 中文
  • 1 篇 其他
检索条件"主题词=3D medical image segmentation"
70 条 记 录,以下是1-10 订阅
排序:
EdGE: Edge distillation and gap elimination for heterogeneous networks in 3d medical image segmentation
收藏 引用
KNOWLEdGE-BASEd SYSTEMS 2025年 314卷
作者: Yu, Xiangchun Wu, Tianqi Zhang, dingwen Zheng, Jian Wu, Jianqing Jiangxi Univ Sci & Technol Sch Informat Engn Jiangxi Prov Key Lab Multidimens Intelligent Perce Ganzhou 341000 Peoples R China
Compressing the cumbersome Vision Transformers (ViTs) or ConvNets into compact students can effectively facilitate the deployment of 3d medical image segmentation models on embedded devices. However, teacherstudent he... 详细信息
来源: 评论
LW-CTrans: A lightweight hybrid network of CNN and Transformer for 3d medical image segmentation
收藏 引用
medical image ANALYSIS 2025年 102卷 103545页
作者: Kuang, Hulin Wang, Yahui Tana, Xianzhen Yang, Jialin Sun, Jiarui Liu, Jin Qiu, Wu Zhang, Jingyang Zhang, Jiulou Yang, Chunfeng Wang, Jianxin Chen, Yang Cent South Univ Sch Comp Sci & Engn Hunan Prov Key Lab Bioinformat Changsha 410000 Peoples R China Southeast Univ Sch Comp Sci & Engn Nanjing 210096 Peoples R China Southeast Univ Key Lab New Generat Artificial Intelligence Techno Minist Educ Nanjing 210096 Peoples R China Huazhong Univ Sci & Technol Sch Life Sci & Technol Wuhan 430000 Peoples R China Nanjing Med Univ Affiliated Hosp 1 Dept Radiol Nanjing 210096 Peoples R China Nanjing Med Univ Sch Med Imaging Lab Artificial Intelligence Med Imaging LAIMI Nanjing 210096 Peoples R China Xinjiang Univ Xinjiang Engn Res Ctr Big Data & Intelligent Softw Sch Software Urumqi 830091 Xinjiang Peoples R China
Recent models based on convolutional neural network (CNN) and Transformer have achieved the promising performance for 3d medical image segmentation. However, these methods cannot segment small targets well even when e... 详细信息
来源: 评论
HEdN: multi-oriented hierarchical extraction and dual-frequency decoupling network for 3d medical image segmentation
收藏 引用
medical & BIOLOGICAL ENGINEERING & COMPUTING 2025年 第1期63卷 267-291页
作者: Wang, Yu Huang, Guoheng Lu, Zeng Wang, Ying Chen, Xuhang Yuan, Xiaochen Li, Yan Ni, Liujie Huang, Yingping Hunan Tradit Chinese Med Coll Publ Courses Dept Zhuzhou 412012 Hunan Peoples R China Guangdong Univ Technol Sch Comp Sci Guangzhou 510006 Guangdong Peoples R China Guangzhou Interesting Pill Network Technol Co Ltd Guangzhou 510630 Guangdong Peoples R China Macao Polytech Univ Fac Appl Sci Taipa 999078 Peoples R China Huizhou Univ Sch Comp Sci & Engn Huizhou 516001 Guangdong Peoples R China Shenzhen Polytech Univ Shenzhen 518000 Guangdong Peoples R China Ningxiang Tradit Chinese Med Hosp Dept Cardiol 8 Second Ring South Rd Ningxiang 410699 Hunan Peoples R China Sun Yat sen Univ Collaborat Innovat Ctr Canc MedCanc Ctr Dept Radiat OncolGuangdong Key Lab Nasopharyngeal State Key Lab Oncol South China Guangzhou 510006 Guangdong Peoples R China
3d encoder-decoder segmentation architectures struggled with fine-grained feature decomposition, resulting in unclear feature hierarchies when fused across layers. Furthermore, the blurred nature of contour boundaries... 详细信息
来源: 评论
PFormer: An efficient CNN-Transformer hybrid network with content-driven P-attention for 3d medical image segmentation
收藏 引用
BIOmedical SIGNAL PROCESSING ANd CONTROL 2025年 101卷
作者: Gao, Yueyang Zhang, Jinhui Wei, Siyi Li, Zheng Beijing Inst Technol Sch Automat Beijing 100081 Peoples R China
medical imaging, particularly medical image segmentation, is pivotal in modern medicine. Transformer architectures have gained significant attention in the field of medical image segmentation. Both pure transformer ar... 详细信息
来源: 评论
A model use context complementarity feature fusion learning for semi-supervised 3d medical image segmentation
收藏 引用
BIOmedical SIGNAL PROCESSING ANd CONTROL 2025年 102卷
作者: Chen, Lei Zhao, Yikai Yang, dongxu Ma, Yunpeng Zhao, Bingjie Hou, Jieru Liu, Wenhao Tianjin Univ Commerce Sch Informat Engn Tianjin 300134 Peoples R China
In 3d medical image segmentation, Semi-Supervised Learning (SSL) methods have shown strong potential with limited labeled data. However, most existing SSL models fail to effectively utilize correlations between data s... 详细信息
来源: 评论
Self-supervised 3d medical image segmentation by flow-guided mask propagation learning
收藏 引用
medical image ANALYSIS 2025年 101卷 103478页
作者: Bitarafan, Adeleh Mozafari, Mohammad Azampour, Mohammad Farid Baghshah, Mahdieh Soleymani Navab, Nassir Farshad, Azade Sharif Univ Technol Tehran Iran Tech Univ Munich Comp Aided Med Procedures Munich Germany Munich Ctr Machine Learning Munich Germany
despite significant progress in 3d medical image segmentation using deep learning, manual annotation remains a labor-intensive bottleneck. Self-supervised mask propagation (SMP) methods have emerged to alleviate this ... 详细信息
来源: 评论
Attention correction feature and boundary constraint knowledge distillation for efficient 3d medical image segmentation
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 262卷
作者: Yu, Xiangchun Teng, Longxiang Zhang, dingwen Zheng, Jian Chen, Hechang Jiangxi Univ Sci & Technol Sch Informat Engn Jiangxi Prov Key Lab Multidimens Intelligent Perce Ganzhou 341000 Peoples R China Jilin Univ Sch Artificial Intelligence Changchun 130012 Peoples R China
Incorporating auxiliary modules into the teacher to facilitate feature knowledge transfer often incurs additional training costs, significantly impeding the application of feature-based knowledge distillation in 3d me... 详细信息
来源: 评论
3d medical image segmentation based on semi-supervised learning using deep co-training
收藏 引用
APPLIEd SOFT COMPUTING 2024年 159卷
作者: Yang, Jingdong Li, Haoqiu Wang, Han Han, Man Univ Shanghai Sci & Technol Sch Opt Elect & Comp Engn Shanghai 200093 Peoples R China China Acad Chinese Med Sci Guanganmen Hosp Div Rheumatol Beijing 100053 Peoples R China
In recent years, artificial intelligence has been applied to 3d COVId-19 medical image diagnosis, which reduces detection costs and missed diagnosis rates with higher predictive accuracy, and diagnostic efficiency. Ho... 详细信息
来源: 评论
dS-Former: A dual-stream encoding-based transformer for 3d medical image segmentation
收藏 引用
BIOmedical SIGNAL PROCESSING ANd CONTROL 2024年 89卷
作者: Zhang, Lei Zuo, Yi Jia, Yu Li, dongze Zeng, Rui Li, dong Chen, Junren Wang, Wei Sichuan Univ Comp Sci 24 South Sect 1Yihuan Rd Chengdu 610065 Sichuan Peoples R China Sichuan Univ West China Hosp Int Med Ctr Ward Gen Practice Med CtrGen Practice Ward 37 Guoxue Alley Chengdu 610065 Sichuan Peoples R China Sichuan Univ West China Hosp West China Sch Med Dept Emergency MedDisaster Med Ctr 37 Guoxue Alley Chengdu 610065 Sichuan Peoples R China Sichuan Univ West China Hosp West China Sch Med Dept Cardiol 37 Guoxue Alley Chengdu 610065 Sichuan Peoples R China Qinghai Univ Dept Comp Sci 251 Ningda Rd Xining 810016 Qinghai Peoples R China Chengdu Univ Informat Technol Sch Automat 24 Block 1Xuefu Rd Chengdu 610225 Sichuan Peoples R China
Models that utilize self-attention mechanisms, including but not limited to Vision Transformers (ViTs), have shown promising performance in visual tasks like semantic segmentation. This is attributed to their capacity... 详细信息
来源: 评论
TPAFNet: Transformer-driven Pyramid Attention Fusion Network for 3d medical image segmentation
收藏 引用
IEEE JOURNAL OF BIOmedical ANd HEALTH INFORMATICS 2024年 第11期28卷 6803-6814页
作者: Li, Zheng Zhang, Jinhui Wei, Siyi Gao, Yueyang Cao, Chengwei Wu, Zhiwei Beijing Inst Technol Sch Automat Beijing 100081 Peoples R China
The field of 3d medical image segmentation is witnessing a growing trend in the utilization of combined networks that integrate convolutional neural networks and transformers. Nevertheless, prevailing hybrid networks ... 详细信息
来源: 评论