咨询与建议

限定检索结果

文献类型

  • 39 篇 期刊文献
  • 24 篇 会议

馆藏范围

  • 63 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 63 篇 工学
    • 52 篇 计算机科学与技术...
    • 30 篇 电气工程
    • 16 篇 软件工程
    • 11 篇 信息与通信工程
    • 4 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 2 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 网络空间安全
  • 9 篇 理学
    • 4 篇 物理学
    • 3 篇 地球物理学
    • 2 篇 生物学
    • 1 篇 化学
  • 6 篇 医学
    • 6 篇 临床医学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 63 篇 3d object classi...
  • 11 篇 deep learning
  • 11 篇 3d object retrie...
  • 8 篇 point cloud
  • 5 篇 three-dimensiona...
  • 5 篇 feature extracti...
  • 5 篇 3d object recogn...
  • 4 篇 multi-view
  • 4 篇 convolutional ne...
  • 4 篇 solid modeling
  • 3 篇 shape
  • 3 篇 convolutional ne...
  • 3 篇 gan
  • 2 篇 noisy conditions
  • 2 篇 volumetric part
  • 2 篇 similarity measu...
  • 2 篇 multi-hypergraph...
  • 2 篇 multi-view learn...
  • 2 篇 hypergraph
  • 2 篇 convolution

机构

  • 4 篇 tianjin univ sch...
  • 3 篇 univ waterloo de...
  • 3 篇 north china univ...
  • 2 篇 sidi mohamed ben...
  • 2 篇 xidian univ sch ...
  • 2 篇 kfupm ctr intell...
  • 2 篇 kfupm dept infor...
  • 2 篇 jouf univ coll c...
  • 2 篇 guilin univ elec...
  • 2 篇 shanghai univ sc...
  • 2 篇 xiamen univ sch ...
  • 2 篇 chinese acad sci...
  • 2 篇 mohammed v univ ...
  • 2 篇 kfupm sdaia kfup...
  • 2 篇 univ washington ...
  • 2 篇 univ sidi mohame...
  • 2 篇 guangxi normal u...
  • 2 篇 univ hosp fez de...
  • 2 篇 sidi mohamed ben...
  • 2 篇 guilin univ elec...

作者

  • 4 篇 liu an-an
  • 4 篇 qjidaa hassan
  • 3 篇 wang cheng
  • 3 篇 li jonathan
  • 3 篇 song wei
  • 3 篇 sohel ferdous
  • 2 篇 mesbah abderrahi...
  • 2 篇 zhang lingfeng
  • 2 篇 ning xin
  • 2 篇 song dan
  • 2 篇 gao yue
  • 2 篇 wang junyi
  • 2 篇 usman muhammad
  • 2 篇 lin jiming
  • 2 篇 zhang wenhui
  • 2 篇 zhou he-yu
  • 2 篇 atmosukarto indr...
  • 2 篇 tian yifei
  • 2 篇 berrahou aissam
  • 2 篇 helmy tarek

语言

  • 61 篇 英文
  • 1 篇 土耳其文
  • 1 篇 其他
检索条件"主题词=3D object classification"
63 条 记 录,以下是1-10 订阅
排序:
3d object classification using salient point patterns with application to craniofacial research
收藏 引用
PATTERN RECOGNITION 2010年 第4期43卷 1502-1517页
作者: Atmosukarto, Indriyati Wilamowska, Katarzyna Heike, Carrie Shapiro, Linda G. Univ Washington Dept Comp Sci & Engn Seattle WA 98195 USA Seattle Childrens Hosp Craniofacial Ctr Seattle WA USA
This paper presents a new 3d shape representation and classification methodology developed for use in craniofacial dysmorphology studies. The methodology computes low-level features at each point of a 3d mesh represen... 详细信息
来源: 评论
3d object classification and Parameter Estimation based on Parametric Procedural Models  26
3D Object Classification and Parameter Estimation based on P...
收藏 引用
26th International Conference on Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG)
作者: Getto, Roman Fina, Kenten Jarms, Lennart Kuijper, Arjan Fellner, dieter W. Tech Univ Darmstadt Fraunhoferstr 5 D-64283 Darmstadt Germany Fraunhofer IGD Fraunhoferstr 5 D-64283 Darmstadt Germany
Classifying and gathering additional information about an unknown 3d objects is dependent on having a large amount of learning data. We propose to use procedural models as data foundation for this task. In our method ... 详细信息
来源: 评论
Inductive Multi-Hypergraph Learning and Its Application on View-Based 3d object classification
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2018年 第12期27卷 5957-5968页
作者: Zhang, Zizhao Lin, Haojie Zhao, Xibin Ji, Rongrong Gao, Yue Tsinghua Univ Key Lab Informat Syst Secur Minist Educ Beijing Natl Res Ctr Informat Sci & TechnolSch S Beijing 100084 Peoples R China Xiamen Univ Sch Informat Sci & Engn Fujian Key Lab Sensing & Comp Smart City Xiamen 361005 Peoples R China
The wide 3d applications have led to increasing amount of 3d object data, and thus effective 3d object classification technique has become an urgent requirement. One important and challenging task for 3d object classi... 详细信息
来源: 评论
CNN-based 3d object classification using Hough space of LidAR point clouds
收藏 引用
HUMAN-CENTRIC COMPUTING ANd INFORMATION SCIENCES 2020年 第1期10卷 1-14页
作者: Song, Wei Zhang, Lingfeng Tian, Yifei Fong, Simon Li, Jinming Gozho, Amanda North China Univ Technol Sch Informat Sci & Technol Beijing Peoples R China Univ Macau Dept Comp & Informat Sci Taipa Macao Peoples R China Beijing Key Lab Urban Intelligent Traff Control T Beijing Peoples R China
With the wide application of Light detection and Ranging (LidAR) in the collection of high-precision environmental point cloud information, three-dimensional (3d) object classification from point clouds has become an ... 详细信息
来源: 评论
L3dOC: Lifelong 3d object classification
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2021年 30卷 7486-7498页
作者: Liu, Yuyang Cong, Yang Sun, Gan Zhang, Tao dong, Jiahua Liu, Hongsen Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Shenyang 110016 Peoples R China Chinese Acad Sci Inst Robot Shenyang 110169 Peoples R China Chinese Acad Sci Inst Intelligent Mfg Shenyang 110169 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China JD Com Inc Beijing 100176 Peoples R China
3d object classification has been widely applied in both academic and industrial scenarios. However, most state-of-the-art algorithms rely on a fixed object classification task set, which cannot tackle the scenario wh... 详细信息
来源: 评论
Adaptive Multi-Hypergraph Convolutional Networks for 3d object classification
收藏 引用
IEEE TRANSACTIONS ON MULTIMEdIA 2023年 25卷 4842-4855页
作者: Nong, Liping Peng, Jie Zhang, Wenhui Lin, Jiming Qiu, Hongbing Wang, Junyi Xidian Univ Sch Telecommun Engn Xian 710071 Peoples R China Guangxi Normal Univ Coll Phys & Technol Guilin 541004 Peoples R China Guilin Univ Elect Technol Sch Comp Sci & Informat Secur Guilin 541004 Peoples R China Guilin Univ Elect Technol Sch Informat & Commun Guilin 541004 Peoples R China
3d object classification is an important task in computer vision. In order to explore the high-order and multi-modal correlations among 3d data, we propose an adaptive multi-hypergraph convolutional networks (AMHCN) f... 详细信息
来源: 评论
Hierarchical multi-view context modelling for 3d object classification and retrieval
收藏 引用
INFORMATION SCIENCES 2021年 547卷 984-995页
作者: Liu, An-An Zhou, Heyu Nie, Weizhi Liu, Zhenguang Liu, Wu Xie, Hongtao Mao, Zhendong Li, Xuanya Song, dan Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Zhejiang Gongshang Univ Hangzhou 310018 Peoples R China AI Res JD Beijing 100105 Peoples R China Univ Sci & Technol China Sch Informat Sci & Technol Hefei 230026 Peoples R China Baidu Inc Beijing 100105 Peoples R China
Recent advances in 3d sensors and 3d modelling software have led to big 3d data. 3d object classification and retrieval are becoming important but challenging tasks. One critical problem for them is how to learn the d... 详细信息
来源: 评论
Balanced Class-Incremental 3d object classification and Retrieval
收藏 引用
IEEE TRANSACTIONS ON KNOWLEdGE ANd dATA ENGINEERING 2024年 第1期36卷 35-48页
作者: Liu, An-An Lu, Haochun Zhou, Heyu Li, Tianbao Kankanhalli, Mohan Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei 230088 Anhui Peoples R China Natl Univ Singapore Sch Comp Singapore 117543 Singapore
Most existing 3d object classification and retrieval algorithms rely on one-off supervised learning on closed 3d object sets and tend to provide rigid convolutional neural networks with little scalability. Such limita... 详细信息
来源: 评论
NormalNet: A voxel-based CNN for 3d object classification and retrieval
收藏 引用
NEUROCOMPUTING 2019年 323卷 139-147页
作者: Wang, Cheng Cheng, Ming Sohel, Ferdous Bennamoun, Mohammed Li, Jonathan Xiamen Univ Sch Informat Sci & Engn Fujian Key Lab Sensing & Comp Smart City Xiamen Peoples R China Murdoch Univ Perth WA Australia Univ Western Australia Perth WA Australia Univ Waterloo Dept Geog & Environm Management Waterloo ON Canada
A common approach to tackle 3d object recognition tasks is to project 3d data to multiple 2d images. Projection only captures the outline of the object, and discards the internal information that may be crucial for th... 详细信息
来源: 评论
Hypergraph wavelet neural networks for 3d object classification
收藏 引用
NEUROCOMPUTING 2021年 463卷 580-595页
作者: Nong, Liping Wang, Junyi Lin, Jiming Qiu, Hongbing Zheng, Lin Zhang, Wenhui Xidian Univ Sch Telecommun Engn Xian 710071 Peoples R China Guangxi Normal Univ Coll Phys & Technol Guilin 541004 Peoples R China Guilin Univ Elect Technol Sch Informat & Commun Guilin 541004 Peoples R China Guilin Univ Elect Technol Sch Comp Sci & Informat Secur Guilin 541004 Peoples R China
Recently, hypergraph learning has shown great potential in a variety of classification tasks. However, existing hypergraph neural networks lack flexibility in modeling and extracting high-order relationships among dat... 详细信息
来源: 评论