咨询与建议

限定检索结果

文献类型

  • 545 篇 期刊文献
  • 340 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 893 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 863 篇 工学
    • 543 篇 计算机科学与技术...
    • 437 篇 电气工程
    • 114 篇 控制科学与工程
    • 114 篇 交通运输工程
    • 93 篇 软件工程
    • 84 篇 仪器科学与技术
    • 82 篇 信息与通信工程
    • 57 篇 土木工程
    • 38 篇 测绘科学与技术
    • 35 篇 机械工程
    • 31 篇 电子科学与技术(可...
    • 21 篇 环境科学与工程(可...
    • 9 篇 网络空间安全
    • 8 篇 材料科学与工程(可...
    • 8 篇 航空宇航科学与技...
    • 4 篇 化学工程与技术
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 生物医学工程(可授...
  • 151 篇 理学
    • 68 篇 化学
    • 60 篇 生物学
    • 57 篇 物理学
    • 26 篇 地球物理学
    • 5 篇 数学
    • 3 篇 地理学
  • 104 篇 医学
    • 101 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 43 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 2 篇 农学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 893 篇 3d object detect...
  • 226 篇 autonomous drivi...
  • 138 篇 point cloud
  • 121 篇 three-dimensiona...
  • 118 篇 object detection
  • 114 篇 deep learning
  • 102 篇 feature extracti...
  • 101 篇 lidar
  • 84 篇 point cloud comp...
  • 63 篇 laser radar
  • 56 篇 point clouds
  • 46 篇 transformer
  • 43 篇 autonomous vehic...
  • 42 篇 detectors
  • 31 篇 multi-modal fusi...
  • 30 篇 cameras
  • 29 篇 proposals
  • 28 篇 attention mechan...
  • 28 篇 sensor fusion
  • 25 篇 computer vision

机构

  • 15 篇 univ chinese aca...
  • 9 篇 univ sci & techn...
  • 9 篇 chinese acad sci...
  • 9 篇 huazhong univ sc...
  • 8 篇 shanghai ai lab ...
  • 7 篇 tsinghua univ de...
  • 7 篇 tsinghua univ sc...
  • 7 篇 univ sci & techn...
  • 7 篇 xi an jiao tong ...
  • 7 篇 harbin inst tech...
  • 7 篇 tech univ munich...
  • 7 篇 chinese acad sci...
  • 6 篇 baidu inc people...
  • 6 篇 chinese acad sci...
  • 6 篇 chinese univ hon...
  • 6 篇 tsinghua univ st...
  • 6 篇 changchun univ s...
  • 6 篇 tsinghua univ pe...
  • 5 篇 nanjing univ pos...
  • 5 篇 chinese acad sci...

作者

  • 10 篇 li jun
  • 9 篇 wang li
  • 9 篇 ma huimin
  • 8 篇 lu ke
  • 8 篇 tao chongben
  • 8 篇 zhao huaici
  • 7 篇 arens michael
  • 7 篇 hammer marcus
  • 7 篇 hebel marcus
  • 7 篇 wang ke
  • 7 篇 zhang guoxin
  • 7 篇 song ziying
  • 6 篇 zheng nanning
  • 6 篇 ye xiaoqing
  • 6 篇 ma jie
  • 6 篇 liu haizhuang
  • 6 篇 wang peng
  • 6 篇 li ruifeng
  • 6 篇 zhang xinyu
  • 6 篇 zhang yong

语言

  • 875 篇 英文
  • 15 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
检索条件"主题词=3D object detection"
893 条 记 录,以下是31-40 订阅
排序:
Point-Level Fusion and Channel Attention for 3d object detection in Autonomous driving
收藏 引用
SENSORS 2025年 第4期25卷 1097-1097页
作者: Shen, Juntao Fang, Zheng Huang, Jin Southwest Jiaotong Univ Sch Elect Engn Chengdu 611756 Peoples R China Sichuan Inst Land Sci & Technol Sichuan Ctr Satellite Applicat Technol Chengdu 610072 Peoples R China
As autonomous driving technology progresses, LidAR-based 3d object detection has emerged as a fundamental element of environmental perception systems. PointPillars transforms point cloud data into a two-dimensional ps... 详细信息
来源: 评论
dSC3d: deformable Sampling Constraints in Stereo 3d object detection for Autonomous driving
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS ANd SYSTEMS FOR VIdEO TECHNOLOGY 2025年 第3期35卷 2794-2805页
作者: Chen, Jiawei Song, Qi Guo, Wenzhong Huang, Rui Fuzhou Univ Coll Comp & Data Sci Fuzhou 350116 Peoples R China Chinese Univ Hong Kong Shenzhen CUHKSZ Sch Sci & Engn Hong Kong 518172 Guangdong Peoples R China
Camera-based stereo 3d object detection estimates 3d properties of objects with binocular images only, which is a cost-effective solution for autonomous driving. The state-of-the-art methods mainly improve the detecti... 详细信息
来源: 评论
MIM: High-definition Maps Incorporated Multi-View 3d object detection
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2025年 第3期26卷 3989-4001页
作者: Xiao, Jinsheng Wang, Shurui Zhou, Jian Tian, Ziyue Zhang, Hongping Wang, Yuan-Fang Wuhan Univ Sch Elect Informat Wuhan 430072 Peoples R China Wuhan Univ State Key Lab Informat Engn Surveying Mapping & Re Wuhan 430072 Peoples R China Wuhan Univ GNSS Res Ctr Wuhan 430072 Peoples R China Univ Calif Santa Barbara Dept Comp Sci Santa Barbara CA 93106 USA
3d object detection has aroused increasing interest as a crucial component of autonomous driving systems. While recent works have explored various multi-modal fusion methods to enhance accuracy and robustness, fusing ... 详细信息
来源: 评论
Bi-Att3ddet: Attention-Based Bi-directional Fusion for Multi-Modal 3d object detection
收藏 引用
SENSORS 2025年 第3期25卷 658-658页
作者: Gao, Xu Zhao, Yaqian Wang, Yanan Shang, Jiandong Zhang, Chunmin Wu, Gang Zhengzhou Univ Sch Comp & Artificial Intelligence Zhengzhou 450001 Peoples R China Natl Supercomp Ctr Zhengzhou Zhengzhou 450001 Peoples R China Yutong Bus Co Ltd Zhengzhou 450000 Peoples R China
Currently, multi-modal 3d object detection methods have become a key area of research in the field of autonomous driving. Fusion is an essential factor affecting performance in multi-modal object detection. However, p... 详细信息
来源: 评论
PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3d object detection
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 281卷
作者: Li, Yidi Wen, Jiahao Gong, Rui Ren, Bin Li, Wenhao Cheng, Chen Liu, Hong Sebe, Nicu Taiyuan Univ Technol Coll Comp Sci & Technol Taiyuan Peoples R China Peking Univ Shenzhen Grad Sch Key Lab Machine Percept Shenzhen Peoples R China Univ Pisa Pisa Italy Univ Trento Trento Italy
The integration of point and voxel representations is becoming more common in Light detection and Ranging (LidAR)-based 3d object detection. However, existing fusion strategies suffer from ineffective semantic alignme... 详细信息
来源: 评论
PRNet: 3d object detection Network-Based on Point-Region Fusion
收藏 引用
APPLIEd SCIENCES-BASEL 2025年 第7期15卷 3759-3759页
作者: Fu, Yufei Guo, Yuhao Hu, Hui Univ Liverpool Dept Elect Engn & Elect Liverpool L69 3GJ England East China Jiaotong Univ Coll Informat Engn Nanchang 330013 Peoples R China
object detection is a pivotal task in the realm of autonomous driving, where reliance on single-modality information often proves inadequate for high-precision detection tasks. In current research, object detection ne... 详细信息
来源: 评论
Boosting 3d object detection via Self-distilling Introspective data
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2025年 第5期26卷 6587-6600页
作者: Wang, Chaoqun Qin, Yiran Kang, Zijian Ma, Ningning Shi, Yukai Li, Zhen Zhang, Ruimao Sun Yat Sen Univ Sch Elect & Commun Engn Shenzhen 518107 Peoples R China Chinese Univ Hong Kong Sch Sci & Engn Shenzhen 518172 Peoples R China NIO Autonomous Driving Div Beijing 100190 Peoples R China Guangdong Univ Technol Sch Informat Engn Guangzhou 510006 Peoples R China Chinese Univ Hong Kong Shenzhen 518172 Peoples R China Guangdong Key Lab Big Data Anal & Proc Guangzhou 510006 Peoples R China
3d object detection is a fundamental yet critical task for autonomous driving. In this paper, we investigate a novel self-distilling paradigm by proposing Self-distilling Introspective data (SId) to boost the accuracy... 详细信息
来源: 评论
Multi-Modal Fusion Based on depth Adaptive Mechanism for 3d object detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEdIA 2025年 27卷 707-717页
作者: Liu, Zhanwen Cheng, Juanru Fan, Jin Lin, Shan Wang, Yang Zhao, Xiangmo Changan Univ Sch Informat Engn Xian 710064 Peoples R China Univ Sci & Technol China Sch Informat Hefei 230026 Peoples R China
Lidars and cameras are critical sensors for 3d object detection in autonomous driving. despite the increasing popularity of sensor fusion in this field, accurate and robust fusion methods are still under exploration d... 详细信息
来源: 评论
dART3d: depth-Aware Robust Adversarial Training for Monocular 3d object detection
收藏 引用
ELECTRONICS LETTERS 2025年 第1期61卷
作者: Ju, Xinrui Shang, Xiaoke Li, Xingyuan Ren, Bohua Dongbei Univ Finance & Econ Dalian Peoples R China Dalian Univ Technol Dalian Peoples R China
Monocular 3d object detection plays a pivotal role in the field of autonomous driving and numerous deep learning-based methods have made significant breakthroughs in this area. despite the advancements in detection ac... 详细信息
来源: 评论
dispersion Adaptive Convolution: Robust Multi-Modal 3d object detection by Incorporating Sensor Characteristics
收藏 引用
JOURNAL OF CIRCUITS SYSTEMS ANd COMPUTERS 2025年 第7期34卷
作者: Chen, Yaqing Wang, Huaming Nanjing Univ Aeronaut & Astronaut Coll Mech & Elect Engn Nanjing 210016 Jiangsu Peoples R China
Multi-modal three-dimensional (3d) roadside object detection is a challenging yet critical topic for Vehicle-Infrastructure Cooperated Autonomous driving (VICAd). Recently, the Birds-Eye View (BEV) framework has emerg... 详细信息
来源: 评论