咨询与建议

限定检索结果

文献类型

  • 547 篇 期刊文献
  • 340 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 895 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 864 篇 工学
    • 544 篇 计算机科学与技术...
    • 438 篇 电气工程
    • 114 篇 控制科学与工程
    • 114 篇 交通运输工程
    • 93 篇 软件工程
    • 84 篇 仪器科学与技术
    • 83 篇 信息与通信工程
    • 57 篇 土木工程
    • 38 篇 测绘科学与技术
    • 35 篇 机械工程
    • 31 篇 电子科学与技术(可...
    • 21 篇 环境科学与工程(可...
    • 9 篇 材料科学与工程(可...
    • 9 篇 网络空间安全
    • 8 篇 航空宇航科学与技...
    • 4 篇 化学工程与技术
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 生物医学工程(可授...
  • 152 篇 理学
    • 68 篇 化学
    • 60 篇 生物学
    • 58 篇 物理学
    • 26 篇 地球物理学
    • 5 篇 数学
    • 3 篇 地理学
  • 104 篇 医学
    • 101 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 43 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 2 篇 农学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 895 篇 3d object detect...
  • 226 篇 autonomous drivi...
  • 138 篇 point cloud
  • 121 篇 three-dimensiona...
  • 118 篇 object detection
  • 114 篇 deep learning
  • 102 篇 feature extracti...
  • 101 篇 lidar
  • 84 篇 point cloud comp...
  • 63 篇 laser radar
  • 56 篇 point clouds
  • 46 篇 transformer
  • 43 篇 autonomous vehic...
  • 42 篇 detectors
  • 31 篇 multi-modal fusi...
  • 30 篇 cameras
  • 29 篇 proposals
  • 28 篇 attention mechan...
  • 28 篇 sensor fusion
  • 25 篇 computer vision

机构

  • 15 篇 univ chinese aca...
  • 9 篇 univ sci & techn...
  • 9 篇 chinese acad sci...
  • 9 篇 huazhong univ sc...
  • 8 篇 shanghai ai lab ...
  • 7 篇 tsinghua univ de...
  • 7 篇 tsinghua univ sc...
  • 7 篇 univ sci & techn...
  • 7 篇 xi an jiao tong ...
  • 7 篇 harbin inst tech...
  • 7 篇 tech univ munich...
  • 7 篇 chinese acad sci...
  • 6 篇 baidu inc people...
  • 6 篇 chinese acad sci...
  • 6 篇 chinese univ hon...
  • 6 篇 tsinghua univ st...
  • 6 篇 changchun univ s...
  • 6 篇 tsinghua univ pe...
  • 5 篇 nanjing univ pos...
  • 5 篇 chinese acad sci...

作者

  • 10 篇 li jun
  • 9 篇 wang li
  • 9 篇 ma huimin
  • 8 篇 lu ke
  • 8 篇 tao chongben
  • 8 篇 zhao huaici
  • 7 篇 arens michael
  • 7 篇 hammer marcus
  • 7 篇 hebel marcus
  • 7 篇 wang ke
  • 7 篇 zhang guoxin
  • 7 篇 song ziying
  • 6 篇 zheng nanning
  • 6 篇 ye xiaoqing
  • 6 篇 ma jie
  • 6 篇 liu haizhuang
  • 6 篇 wang peng
  • 6 篇 li ruifeng
  • 6 篇 zhang xinyu
  • 6 篇 zhang yong

语言

  • 877 篇 英文
  • 15 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
检索条件"主题词=3D object detection"
895 条 记 录,以下是41-50 订阅
排序:
A multi-level multi-attention mechanism millimeter-wave radar and camera fusion method for 3d object detection
收藏 引用
SIGNAL IMAGE ANd VIdEO PROCESSING 2025年 第6期19卷 1-11页
作者: Miao, Zehua Li, Yinbei Wu, Zizhuo Yang, Jiaqiang Ma, Yuliang Hangzhou Dianzi Univ Sch Automat Hangzhou 310018 Peoples R China Peoples Hosp Huaiyin Jinan Key Lab Rehabil & Evaluat Motor Dysfunct Jinan 250100 Shandong Peoples R China Zhejiang Univ Coll Elect Engn Hangzhou 310027 Peoples R China Shandong BetR Med Technol Co Ltd Jinan 250100 Shandong Peoples R China
In the field of autonomous driving, a commonly employed method to enhance detection accuracy and robustness is the fusion of multi-sensor perception. The fusion of millimeter-wave radar and camera can effectively comp... 详细信息
来源: 评论
Multi-Modal Fusion Based on depth Adaptive Mechanism for 3d object detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEdIA 2025年 27卷 707-717页
作者: Liu, Zhanwen Cheng, Juanru Fan, Jin Lin, Shan Wang, Yang Zhao, Xiangmo Changan Univ Sch Informat Engn Xian 710064 Peoples R China Univ Sci & Technol China Sch Informat Hefei 230026 Peoples R China
Lidars and cameras are critical sensors for 3d object detection in autonomous driving. despite the increasing popularity of sensor fusion in this field, accurate and robust fusion methods are still under exploration d... 详细信息
来源: 评论
dART3d: depth-Aware Robust Adversarial Training for Monocular 3d object detection
收藏 引用
ELECTRONICS LETTERS 2025年 第1期61卷
作者: Ju, Xinrui Shang, Xiaoke Li, Xingyuan Ren, Bohua Dongbei Univ Finance & Econ Dalian Peoples R China Dalian Univ Technol Dalian Peoples R China
Monocular 3d object detection plays a pivotal role in the field of autonomous driving and numerous deep learning-based methods have made significant breakthroughs in this area. despite the advancements in detection ac... 详细信息
来源: 评论
dispersion Adaptive Convolution: Robust Multi-Modal 3d object detection by Incorporating Sensor Characteristics
收藏 引用
JOURNAL OF CIRCUITS SYSTEMS ANd COMPUTERS 2025年 第7期34卷
作者: Chen, Yaqing Wang, Huaming Nanjing Univ Aeronaut & Astronaut Coll Mech & Elect Engn Nanjing 210016 Jiangsu Peoples R China
Multi-modal three-dimensional (3d) roadside object detection is a challenging yet critical topic for Vehicle-Infrastructure Cooperated Autonomous driving (VICAd). Recently, the Birds-Eye View (BEV) framework has emerg... 详细信息
来源: 评论
Cross-domain Generalization for LidAR-Based 3d object detection in Infrastructure and Vehicle Environments
收藏 引用
SENSORS 2025年 第3期25卷 767-767页
作者: Zhi, Peng Jiang, Longhao Yang, Xiao Wang, Xingzheng Li, Hung-Wei Zhou, Qingguo Li, Kuan-Ching Ivanovic, Mirjana Lanzhou Univ Sch Informat Sci & Engn Lanzhou 730000 Peoples R China Providence Univ Dept Comp Sci & Informat Engn Taichung 43301 Taiwan Univ Novi Sad Fac Sci Novi Sad 21000 Serbia
In the intelligent transportation field, the Internet of Things (IoT) is commonly applied using 3d object detection as a crucial part of Vehicle-to-Everything (V2X) cooperative perception. However, challenges arise fr... 详细信息
来源: 评论
SOFW: A Synergistic Optimization Framework for Indoor 3d object detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEdIA 2025年 27卷 637-651页
作者: dai, Kun Jiang, Zhiqiang Xie, Tao Wang, Ke Liu, dedong Fan, Zhendong Li, Ruifeng Zhao, Lijun Omar, Mohamed Harbin Inst Technol State Key Lab Robot & Syst Harbin 150006 Peoples R China State Key Yangtze River Delta HIT Robot Technol Re Wuhu 241000 Peoples R China
In this work, we observe that indoor 3d object detection across varied scene domains encompasses both universal attributes and specific features. Based on this insight, we propose SOFW, a synergistic optimization fram... 详细信息
来源: 评论
MdFusion: Multi-dimension Semantic-Spatial Feature Fusion for LidAR-Camera 3d object detection
收藏 引用
REMOTE SENSING 2025年 第7期17卷 1240-1240页
作者: Qiao, Renzhong Yuan, Hao Guan, Zhenbo Zhang, Wenbo Xidian Univ Sch Elect Engn Xian 710071 Peoples R China CETC 54th Res Inst Shijiazhuang 050081 Peoples R China Hebei Key Lab Intelligent Informat Percept & Proc Shijiazhuang 050081 Peoples R China
Accurate 3d object detection is becoming increasingly vital for the development of robust perception systems, particularly in applications such as autonomous driving vehicles and robotic systems. Many existing approac... 详细信息
来源: 评论
PEPillar: a point-enhanced pillar network for efficient 3d object detection in autonomous driving
收藏 引用
VISUAL COMPUTER 2025年 第3期41卷 1777-1788页
作者: Sun, Libo Li, Yifan Qin, Wenhu Southeast Univ Sch Instrument Sci & Engn Nanjing 210096 Peoples R China
Pillar-based 3d object detection methods outperform traditional point-based and voxel-based methods in terms of speed. However, most of recent methods in this category use simple aggregation techniques to construct pi... 详细信息
来源: 评论
STFNET: Sparse Temporal Fusion for 3d object detection in LidAR Point Cloud
收藏 引用
IEEE SENSORS JOURNAL 2025年 第3期25卷 5866-5877页
作者: Meng, Xin Zhou, Yuan Ma, Jun Jiang, Fangdi Qi, Yongze Wang, Cui Kim, Jonghyuk Wang, Shifeng Changchun Univ Sci & Technol Sch Optoelect Engn Changchun 130022 Peoples R China Leapmotor Hangzhou 310000 Peoples R China Changchun Univ Sci & Technol Zhongshan Inst Zhongshan 528400 Peoples R China Naif Arab Univ Secur Sci Ctr Excellence Cybercrimes & Digital Forens Riyadh 11452 Saudi Arabia
In autonomous driving and robotics, 3d object detection using LidAR point clouds is a critical task. However, existing single-frame 3d object detection methods face challenges such as noise, occlusions, and sparsity, ... 详细信息
来源: 评论
Multimodal 3d object detection Based on Sparse Interaction in Internet of Vehicles
收藏 引用
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2025年 第2期74卷 2174-2186页
作者: Li, Hui Ge, Tongao Bai, Keqiang Nie, Gaofeng Xu, Lingwei Ai, Xiaoxue Cao, Song Qingdao Univ Sci & Technol Dept Informat Sci & Technol Qingdao 266061 Peoples R China Beijing Univ Posts & Telecommun State key Lab Networking & Switching Technol Beijing 100876 Peoples R China Guangxi Minzu Univ Guangxi Key Lab Hybrid Computat & IC Design Anal Nanning 530006 Peoples R China Southwest Univ Sci & Technol Sch Informat Engn Mianyang 621010 Sichuan Peoples R China
Combining the Internet of Vehicles with autonomous driving visual perception can enhance vehicle intelligence. Vehicles use the 3d object detection algorithm to perceive their surroundings and share detection results ... 详细信息
来源: 评论