咨询与建议

限定检索结果

文献类型

  • 547 篇 期刊文献
  • 340 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 895 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 864 篇 工学
    • 544 篇 计算机科学与技术...
    • 438 篇 电气工程
    • 114 篇 控制科学与工程
    • 114 篇 交通运输工程
    • 93 篇 软件工程
    • 84 篇 仪器科学与技术
    • 83 篇 信息与通信工程
    • 57 篇 土木工程
    • 38 篇 测绘科学与技术
    • 35 篇 机械工程
    • 31 篇 电子科学与技术(可...
    • 21 篇 环境科学与工程(可...
    • 9 篇 材料科学与工程(可...
    • 9 篇 网络空间安全
    • 8 篇 航空宇航科学与技...
    • 4 篇 化学工程与技术
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 生物医学工程(可授...
  • 152 篇 理学
    • 68 篇 化学
    • 60 篇 生物学
    • 58 篇 物理学
    • 26 篇 地球物理学
    • 5 篇 数学
    • 3 篇 地理学
  • 104 篇 医学
    • 101 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 43 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 2 篇 农学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 895 篇 3d object detect...
  • 226 篇 autonomous drivi...
  • 138 篇 point cloud
  • 121 篇 three-dimensiona...
  • 118 篇 object detection
  • 114 篇 deep learning
  • 102 篇 feature extracti...
  • 101 篇 lidar
  • 84 篇 point cloud comp...
  • 63 篇 laser radar
  • 56 篇 point clouds
  • 46 篇 transformer
  • 43 篇 autonomous vehic...
  • 42 篇 detectors
  • 31 篇 multi-modal fusi...
  • 30 篇 cameras
  • 29 篇 proposals
  • 28 篇 attention mechan...
  • 28 篇 sensor fusion
  • 25 篇 computer vision

机构

  • 15 篇 univ chinese aca...
  • 9 篇 univ sci & techn...
  • 9 篇 chinese acad sci...
  • 9 篇 huazhong univ sc...
  • 8 篇 shanghai ai lab ...
  • 7 篇 tsinghua univ de...
  • 7 篇 tsinghua univ sc...
  • 7 篇 univ sci & techn...
  • 7 篇 xi an jiao tong ...
  • 7 篇 harbin inst tech...
  • 7 篇 tech univ munich...
  • 7 篇 chinese acad sci...
  • 6 篇 baidu inc people...
  • 6 篇 chinese acad sci...
  • 6 篇 chinese univ hon...
  • 6 篇 tsinghua univ st...
  • 6 篇 changchun univ s...
  • 6 篇 tsinghua univ pe...
  • 5 篇 nanjing univ pos...
  • 5 篇 chinese acad sci...

作者

  • 10 篇 li jun
  • 9 篇 wang li
  • 9 篇 ma huimin
  • 8 篇 lu ke
  • 8 篇 tao chongben
  • 8 篇 zhao huaici
  • 7 篇 arens michael
  • 7 篇 hammer marcus
  • 7 篇 hebel marcus
  • 7 篇 wang ke
  • 7 篇 zhang guoxin
  • 7 篇 song ziying
  • 6 篇 zheng nanning
  • 6 篇 ye xiaoqing
  • 6 篇 ma jie
  • 6 篇 liu haizhuang
  • 6 篇 wang peng
  • 6 篇 li ruifeng
  • 6 篇 zhang xinyu
  • 6 篇 zhang yong

语言

  • 877 篇 英文
  • 15 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
检索条件"主题词=3D object detection"
895 条 记 录,以下是51-60 订阅
排序:
BRTPillar: boosting real-time 3d object detection based point cloud and RGB image fusion in autonomous driving
收藏 引用
INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING ANd CYBERNETICS 2025年 第1期18卷 217-235页
作者: Zhang, Zhitian Zhao, Hongdong Zhao, Yazhou Chen, dan Zhang, Ke Li, Yanqi Hebei Univ Technol Sch Elect & Informat Engn Tianjin Peoples R China
PurposeIn autonomous driving, the inherent sparsity of point clouds often limits the performance of object detection, while existing multimodal architectures struggle to meet the real-time requirements for 3d object d... 详细信息
来源: 评论
NRAP-RCNN: A Pseudo Point Cloud 3d object detection Method Based on Noise-Reduction Sparse Convolution and Attention Mechanism
收藏 引用
INFORMATION 2025年 第3期16卷 176-176页
作者: Zhou, Ziyue Jia, Yongqing Zhu, Tao Wan, Yaping Univ South China Sch Comp Sci Hengyang 421001 Peoples R China Hunan Elect Res Inst Testing Grp Co Ltd Technol Dept Xiangxiang 411402 Peoples R China
In recent years, pseudo point clouds generated from depth completion of RGB images and LidAR data have provided a robust foundation for multimodal 3d object detection. However, the generation process often introduces ... 详细信息
来源: 评论
VPC-VoxelNet: multi-modal fusion 3d object detection networks based on virtual point clouds
收藏 引用
INTERNATIONAL JOURNAL OF MULTIMEdIA INFORMATION RETRIEVAL 2025年 第1期14卷 1-11页
作者: Zhang, Qiang Shi, Qin Cheng, Teng Zhang, Junning Chen, Jiong Hefei Univ Technol Engn Res Ctr Intelligent Transportat & Cooperat Ve Key Lab Automated Vehicle Safety Technol Anhui Pro Hefei 230009 Peoples R China Chery Automobile Co Ltd Wuhu 241000 Peoples R China Natl Univ Def Technol Sch Elect Countermeasures Hefei 230041 Peoples R China Nio Automot Technol Anhui Co LTD Hefei 230041 Peoples R China
To address the impact of sparsity and disorder of point clouds on object detection accuracy, this paper proposes a multi-modal fusion network VPC-VoxelNet based on virtual point clouds. Firstly, virtual point clouds a... 详细信息
来源: 评论
MSFNet3d: Monocular 3d object detection via dual-Branch depth-Consistent Fusion and Semantic-Guided Point Cloud Refinement
收藏 引用
WORLd ELECTRIC VEHICLE JOURNAL 2025年 第3期16卷 173-173页
作者: Yang, Rong You, Zhijie Luo, Renhui Guangxi Univ Coll Mech Engn Nanning 530004 Peoples R China
The rapid development of autonomous driving has underscored the pivotal role of 3d perception. Monocular 3d object detection, as a cost-effective alternative to expensive lidar systems, is garnering increasing attenti... 详细信息
来源: 评论
Alternating interaction fusion of Image-Point cloud for Multi-Modal 3d object detection
收藏 引用
AdVANCEd ENGINEERING INFORMATICS 2025年 65卷
作者: Li, Guofa Lu, Haifeng Li, Jie Li, Zhenning Li, Qingkun Ren, Xiangyun Zheng, Ling Chongqing Univ Coll Mech & Vehicle Engn Chongqing 400044 Peoples R China Shenzhen Univ Inst Human Factors & Ergon Coll Mechatron & Control Engn Shenzhen 518060 Peoples R China Univ Macau State Key Lab Internet Things Smart City Macau 999078 Peoples R China Chinese Acad Sci Inst Software Beijing Key Lab Human Comp Interact Beijing 100190 Peoples R China Chongqing Changan Automobile Co Ltd State Key Lab Intelligent Vehicle Safety Technol Chongqing 400023 Peoples R China
A mainstream feature fusion method involves enhancing Lidar point cloud information by incorporating camera, but it fails to fully utilize the rich information in images. Another method uses a dual-channel parallel ap... 详细信息
来源: 评论
Weakly Supervised 3d object detection via Multi-level Visual Guidance  18th
Weakly Supervised 3D Object Detection via Multi-level Visual...
收藏 引用
18th European Conference on Computer Vision (ECCV)
作者: Huang, Kuan-Chih Tsai, Yi-Hsuan Yang, Ming-Hsuan Univ Calif Merced CA 95343 USA Google Mountain View CA USA
Weakly supervised 3d object detection aims to learn a 3d detector with lower annotation cost, e.g., 2d labels. Unlike prior work which still relies on few accurate 3d annotations, we propose a framework to study how t... 详细信息
来源: 评论
ASPVNet: Attention Based Sparse Point-Voxel Network for 3d object detection  7th
ASPVNet: Attention Based Sparse Point-Voxel Network for 3D O...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Yu, Bingxin Wang, Lu He, Yuhong Wang, Xiaoyang Cheng, Jun Northeastern Univ Shenyang Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China
As the core perception component, 3d object detection plays a crucial role in autonomous driving and robot navigation systems. However, most existing point-voxel based methods rely on feature conversion and complex fu... 详细信息
来源: 评论
LiFT: Lightweight, FPGA-Tailored 3d object detection Based on LidAR data  18th
LiFT: Lightweight, FPGA-Tailored 3D Object Detection Based o...
收藏 引用
18th International Workshop on design and Architecture for Signal and Image Processing, dASIP 2025
作者: Lis, Konrad Kryjak, Tomasz Gorgoń, Marek Embedded Vision Systems Group Department of Automatic Control and Robotics AGH University of Krakow Al. Mickiewicza 30 Krakow30-059 Poland
This paper presents LiFT, a lightweight, fully quantized 3d object detection algorithm for LidAR data, optimized for real-time inference on FPGA platforms. Through an in-depth analysis of FPGA-specific limitation... 详细信息
来源: 评论
MutualForce: Mutual-Aware Enhancement for 4d Radar-LidAR 3d object detection
MutualForce: Mutual-Aware Enhancement for 4D Radar-LiDAR 3D ...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Peng, Xiangyuan Sun, Huawei Bierzynski, Kay Fischbacher, Anton Servadei, Lorenzo Wille, Robert Technical University of Munich Munich Germany Infineon Technologies AG Neubiberg Germany
Radar and LidAR have been widely used in autonomous driving as LidAR provides rich structure information, and radar demonstrates high robustness under adverse weather. Recent studies highlight the effectiveness of fus... 详细信息
来源: 评论
RAFdet: A Novel Camera-Radar Fusion Framework for Robust 3d object detection in Autonomous driving
RAFDet: A Novel Camera-Radar Fusion Framework for Robust 3D ...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Cao, Xingjian Wang, Ping Zhang, Zhitao Tu, Huizhao Chen, Yong Liang, Zhenbao College of Electronic and Information Engineering Tongji University Shanghai China College of Transportation Tongji University Shanghai China Co. Ltd. Ningbo China
Accurate and reliable 3d object detection is crucial for autonomous driving, normally achieved using camera-only or camera-LidAR fusion methods based on BEV (Bird's Eye View) perspective. However, visual perceptio... 详细信息
来源: 评论