咨询与建议

限定检索结果

文献类型

  • 50 篇 期刊文献
  • 46 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 98 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 94 篇 工学
    • 67 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 11 篇 测绘科学与技术
    • 9 篇 控制科学与工程
    • 9 篇 软件工程
    • 7 篇 信息与通信工程
    • 7 篇 土木工程
    • 6 篇 建筑学
    • 5 篇 环境科学与工程(可...
    • 4 篇 交通运输工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 23 篇 医学
    • 20 篇 临床医学
    • 5 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 13 篇 理学
    • 7 篇 地球物理学
    • 3 篇 生物学
    • 2 篇 数学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 地理学
  • 3 篇 农学
    • 3 篇 作物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 文学
    • 2 篇 新闻传播学

主题

  • 98 篇 3d semantic segm...
  • 16 篇 point cloud
  • 15 篇 deep learning
  • 10 篇 three-dimensiona...
  • 10 篇 point clouds
  • 9 篇 3d object detect...
  • 7 篇 semantics
  • 6 篇 semantic segment...
  • 6 篇 3d instance segm...
  • 5 篇 task analysis
  • 5 篇 lidar
  • 5 篇 multi-modal fusi...
  • 4 篇 autonomous drivi...
  • 4 篇 3d point cloud
  • 4 篇 3d scene underst...
  • 4 篇 feature extracti...
  • 4 篇 point cloud comp...
  • 3 篇 unsupervised dom...
  • 3 篇 transformers
  • 3 篇 3d reconstructio...

机构

  • 3 篇 univ chinese aca...
  • 3 篇 univ hong kong p...
  • 3 篇 tsinghua univ pe...
  • 3 篇 east china norma...
  • 2 篇 swiss fed inst t...
  • 2 篇 yonsei univ sch ...
  • 2 篇 chinese acad sci...
  • 2 篇 southeast univ s...
  • 2 篇 hku peoples r ch...
  • 2 篇 china univ geosc...
  • 2 篇 xiongan inst inn...
  • 2 篇 china univ geosc...
  • 2 篇 tech univ munich...
  • 2 篇 univ chinese aca...
  • 2 篇 natl univ singap...
  • 1 篇 east china norma...
  • 1 篇 karlsruhe inst t...
  • 1 篇 casia sensetime ...
  • 1 篇 sharper shape sa...
  • 1 篇 cuhk sz peoples ...

作者

  • 4 篇 jiang li
  • 4 篇 wu xiaoyang
  • 3 篇 kim hyoungkwan
  • 3 篇 qu yanyun
  • 3 篇 xie yuan
  • 3 篇 kim juhyeon
  • 3 篇 zhang xiaolin
  • 3 篇 kim yohan
  • 3 篇 li jiamao
  • 3 篇 zhao hengshuang
  • 2 篇 ni peizhou
  • 2 篇 peters torben
  • 2 篇 zhang guanghui
  • 2 篇 litany or
  • 2 篇 jiang tao
  • 2 篇 peng bohao
  • 2 篇 lee gim hee
  • 2 篇 weigel hendrik
  • 2 篇 wan jie
  • 2 篇 beyerer juergen

语言

  • 94 篇 英文
  • 4 篇 其他
检索条件"主题词=3D semantic segmentation"
98 条 记 录,以下是11-20 订阅
排序:
Cross-modal Unsupervised domain Adaptation for 3d semantic segmentation via Bidirectional Fusion-then-distillation  23
Cross-modal Unsupervised Domain Adaptation for 3D Semantic S...
收藏 引用
31st ACM International Conference on Multimedia (MM)
作者: Wu, Yao Xing, Mingwei Zhang, Yachao Xie, Yuan Fan, Jianping Shi, Zhongchao Qu, Yanyun Xiamen Univ Sch Informat Xiamen Peoples R China Xiamen Univ Inst Artificial Intelligence Xiamen Peoples R China Tsinghua Univ Shenzhen Peoples R China East China Normal Univ Shanghai Peoples R China East China Normal Univ Chongqing Inst Chongqing Peoples R China Lenovo Res Beijing Peoples R China
Cross-modal Unsupervised domain Adaptation (UdA) becomes a research hotspot because it reduces the laborious annotation of target domain samples. Existing methods only mutually mimic the outputs of cross-modality in e... 详细信息
来源: 评论
A Multi-Modal Fusion 3d semantic segmentation Method  3
A Multi-Modal Fusion 3D Semantic Segmentation Method
收藏 引用
3rd International Conference on Electronic Information Engineering and Computer Science, EIECS 2023
作者: Bi, Yuxuan Liu, Peng Shi, Jialin Zhang, Tianyi Changchun University of Science and Technology School of Electronic Information Engineering Changchun China
In order to address the issue of low accuracy in existing multi-modal fusion 3d semantic segmentation models, this study proposes an improved multimodal fusion 3d semantic segmentation model based on LidAR and camera.... 详细信息
来源: 评论
Language-Grounded Indoor 3d semantic segmentation in the Wild  1
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: Rozenberszki, david Litany, Or dai, Angela Tech Univ Munich Munich Germany NVIDIA Santa Clara CA USA
Recent advances in 3d semantic segmentation with deep neural networks have shown remarkable success, with rapid performance increase on available datasets. However, current 3d semantic segmentation benchmarks contain ... 详细信息
来源: 评论
dOdA: data-Oriented Sim-to-Real domain Adaptation for 3d semantic segmentation  1
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: ding, Runyu Yang, Jihan Jiang, Li Qi, Xiaojuan Univ Hong Kong Hong Kong Peoples R China MPI Informat Saarbrucken Germany
deep learning approaches achieve prominent success in 3d semantic segmentation. However, collecting densely annotated real-world 3d datasets is extremely time-consuming and expensive. Training models on synthetic data... 详细信息
来源: 评论
Cross-domain and Cross-Modal Knowledge distillation in domain Adaptation for 3d semantic segmentation  22
Cross-Domain and Cross-Modal Knowledge Distillation in Domai...
收藏 引用
30th ACM International Conference on Multimedia (MM)
作者: Li, Miaoyu Zhang, Yachao Xie, Yuan Gao, Zuodong Li, Cuihua Zhang, Zhizhong Qu, Yanyun Xiamen Univ Xiamen Peoples R China East China Normal Univ Shanghai Peoples R China
With the emergence of multi-modal datasets where LidAR and camera are synchronized and calibrated, cross-modal Unsupervised domain Adaptation (UdA) has attracted increasing attention because it reduces the laborious a... 详细信息
来源: 评论
decoupled Iterative deep Sensor Fusion for 3d semantic segmentation
收藏 引用
INTERNATIONAL JOURNAL OF semantic COMPUTING 2021年 第3期15卷 293-312页
作者: duerr, Fabian Weigel, Hendrik Beyerer, Juergen AUDI AG D-85057 Ingolstadt Germany Karlsruhe Inst Technol KIT Vis & Fus Lab Karlsruhe Germany Fraunhofer Ctr Machine Learning Fraunhofer Inst Optron Syst Technol & Image Explo D-76131 Karlsruhe Germany
One of the key tasks for autonomous vehicles or robots is a robust perception of their 3d environment, which is why autonomous vehicles or robots are equipped with a wide range of different sensors. Building upon a ro... 详细信息
来源: 评论
From CAd Models to Soft Point Cloud Labels: An Automatic Annotation Pipeline for Cheaply Supervised 3d semantic segmentation
收藏 引用
REMOTE SENSING 2023年 第14期15卷 3578-3578页
作者: Humblot-Renaux, Galadrielle Jensen, Simon Buus Mogelmose, Andreas Aalborg Univ Visual Anal & Percept Lab DK-9000 Aalborg Denmark
We propose a fully automatic annotation scheme that takes a raw 3d point cloud with a set of fitted CAd models as input and outputs convincing point-wise labels that can be used as cheap training data for point cloud ... 详细信息
来源: 评论
Learning Virtual View Selection for 3d Scene semantic segmentation
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2024年 33卷 4159-4172页
作者: Mu, Tai-Jiang Shen, Ming-Yuan Lai, Yu-Kun Hu, Shi-Min Tsinghua Univ Minist Educ Key Lab Pervas Comp Beijing 100084 Peoples R China Tsinghua Univ Dept Comp Sci & Technol Beijing 100084 Peoples R China Cardiff Univ Sch Comp Sci & Informat Cardiff CF24 4AG Wales
2d-3d joint learning is essential and effective for fundamental 3d vision tasks, such as 3d semantic segmentation, due to the complementary information these two visual modalities contain. Most current 3d scene semant... 详细信息
来源: 评论
3d semantic segmentation Algorithm for Indoor Scenes based on Long-term Memory  15
3D Semantic Segmentation Algorithm for Indoor Scenes based o...
收藏 引用
15th IEEE Conference on Industrial Electronics and Applications (ICIEA)
作者: Liu, Ziyang Chen, Weihai Wang, Jianhua Wu, Xingming Yue, Haosong Peng, Zongju Li, Zhengguo Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China Ningbo Univ Fac Elect Engn & Comp Sci Ningbo 315211 Peoples R China Inst Infocomm Res Singapore 138632 Singapore
deep learning has a strong ability to tackle pixel-level labeling tasks in image understanding. However, the disorder and irregularity of 3d point cloud data make it difficult to be applied. Though there are a few app... 详细信息
来源: 评论
denseFuseNet: Improve 3d semantic segmentation in the Context of Autonomous driving with dense Correspondence
DenseFuseNet: Improve 3D Semantic Segmentation in the Contex...
收藏 引用
IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE)
作者: Lu, Yulun Shanghai Jianping High Sch Shanghai Peoples R China
With the development of deep convolutional networks, autonomous driving has been reforming human social activities in the recent decade. The core issue of autonomous driving is how to integrate the multi-modal percept... 详细信息
来源: 评论