咨询与建议

限定检索结果

文献类型

  • 51 篇 期刊文献
  • 46 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 99 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 95 篇 工学
    • 68 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 11 篇 测绘科学与技术
    • 10 篇 控制科学与工程
    • 10 篇 软件工程
    • 8 篇 信息与通信工程
    • 7 篇 土木工程
    • 6 篇 建筑学
    • 5 篇 环境科学与工程(可...
    • 4 篇 交通运输工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 23 篇 医学
    • 20 篇 临床医学
    • 5 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 13 篇 理学
    • 7 篇 地球物理学
    • 3 篇 生物学
    • 2 篇 数学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 地理学
  • 3 篇 农学
    • 3 篇 作物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 文学
    • 2 篇 新闻传播学

主题

  • 99 篇 3d semantic segm...
  • 16 篇 point cloud
  • 15 篇 deep learning
  • 10 篇 three-dimensiona...
  • 10 篇 point clouds
  • 9 篇 3d object detect...
  • 7 篇 semantics
  • 6 篇 semantic segment...
  • 6 篇 3d instance segm...
  • 5 篇 task analysis
  • 5 篇 lidar
  • 5 篇 multi-modal fusi...
  • 4 篇 autonomous drivi...
  • 4 篇 3d point cloud
  • 4 篇 3d scene underst...
  • 4 篇 feature extracti...
  • 4 篇 point cloud comp...
  • 3 篇 unsupervised dom...
  • 3 篇 transformers
  • 3 篇 3d reconstructio...

机构

  • 3 篇 univ chinese aca...
  • 3 篇 univ hong kong p...
  • 3 篇 tsinghua univ pe...
  • 3 篇 east china norma...
  • 2 篇 swiss fed inst t...
  • 2 篇 yonsei univ sch ...
  • 2 篇 chinese acad sci...
  • 2 篇 southeast univ s...
  • 2 篇 hku peoples r ch...
  • 2 篇 china univ geosc...
  • 2 篇 xiongan inst inn...
  • 2 篇 china univ geosc...
  • 2 篇 tech univ munich...
  • 2 篇 univ chinese aca...
  • 2 篇 natl univ singap...
  • 1 篇 east china norma...
  • 1 篇 karlsruhe inst t...
  • 1 篇 casia sensetime ...
  • 1 篇 sharper shape sa...
  • 1 篇 cuhk sz peoples ...

作者

  • 4 篇 jiang li
  • 4 篇 wu xiaoyang
  • 3 篇 kim hyoungkwan
  • 3 篇 qu yanyun
  • 3 篇 xie yuan
  • 3 篇 kim juhyeon
  • 3 篇 zhang xiaolin
  • 3 篇 kim yohan
  • 3 篇 li jiamao
  • 3 篇 zhao hengshuang
  • 2 篇 ni peizhou
  • 2 篇 peters torben
  • 2 篇 zhang guanghui
  • 2 篇 litany or
  • 2 篇 jiang tao
  • 2 篇 peng bohao
  • 2 篇 lee gim hee
  • 2 篇 weigel hendrik
  • 2 篇 wan jie
  • 2 篇 beyerer juergen

语言

  • 95 篇 英文
  • 4 篇 其他
检索条件"主题词=3D semantic segmentation"
99 条 记 录,以下是21-30 订阅
排序:
A Multi-Modal Fusion 3d semantic segmentation Method  3
A Multi-Modal Fusion 3D Semantic Segmentation Method
收藏 引用
3rd International Conference on Electronic Information Engineering and Computer Science, EIECS 2023
作者: Bi, Yuxuan Liu, Peng Shi, Jialin Zhang, Tianyi Changchun University of Science and Technology School of Electronic Information Engineering Changchun China
In order to address the issue of low accuracy in existing multi-modal fusion 3d semantic segmentation models, this study proposes an improved multimodal fusion 3d semantic segmentation model based on LidAR and camera.... 详细信息
来源: 评论
PIIE-dSA-Net for 3d semantic segmentation of Urban Indoor and Outdoor datasets
收藏 引用
REMOTE SENSING 2022年 第15期14卷 3583页
作者: Gao, Fengjiao Yan, Yiming Lin, Hemin Shi, Ruiyao Heilongjiang Acad Sci Intelligent Mfg Res Inst Harbin 150001 Peoples R China Harbin Engn Univ Coll Informat & Commun Engn Harbin 150001 Peoples R China SOPHGO Beijing 100080 Peoples R China
In this paper, a 3d semantic segmentation method is proposed, in which a novel feature extraction framework is introduced assembling point initial information embedding (PIIE) and dynamic self-attention (dSA)-named PI... 详细信息
来源: 评论
From CAd Models to Soft Point Cloud Labels: An Automatic Annotation Pipeline for Cheaply Supervised 3d semantic segmentation
收藏 引用
REMOTE SENSING 2023年 第14期15卷 3578-3578页
作者: Humblot-Renaux, Galadrielle Jensen, Simon Buus Mogelmose, Andreas Aalborg Univ Visual Anal & Percept Lab DK-9000 Aalborg Denmark
We propose a fully automatic annotation scheme that takes a raw 3d point cloud with a set of fitted CAd models as input and outputs convincing point-wise labels that can be used as cheap training data for point cloud ... 详细信息
来源: 评论
SemRegionNet: Region ensemble 3d semantic instance segmentation network with semantic spatial aware discriminative loss
收藏 引用
NEUROCOMPUTING 2022年 513卷 247-260页
作者: Zhang, Guanghui Zhu, dongchen Shi, Wenjun Li, Jiamao Zhang, Xiaolin Chinese Acad Sci Shanghai Inst Microsyst & Informat Technol Bion Vis Syst Lab State Key Lab Transducer Technol 865 Changning Rd Shanghai 200050 Peoples R China Univ Sci & Technol China 96 JinZhai Rd Hefei 230027 Anhui Peoples R China Xiongan Inst Innovat Xiongan 071700 Peoples R China ShanghaiTech Univ 393 Middle Huaxia Rd Shanghai 201210 Peoples R China
The semantic instance segmentation task on 3d data has made great progress. However, for unstructured 3d point cloud data, the mining of regional knowledge and explicit assistance of semantic for the instance segmenta... 详细信息
来源: 评论
A Real-Time Online Learning Framework for Joint 3d Reconstruction and semantic segmentation of Indoor Scenes
收藏 引用
IEEE ROBOTICS ANd AUTOMATION LETTERS 2022年 第2期7卷 1332-1339页
作者: Menini, davide Kumar, Suryansh Oswald, Martin R. Sandstrom, Erik Sminchisescu, Cristian Van Gool, Luc Swiss Fed Inst Technol CH-8092 Zurich Switzerland Swiss Fed Inst Technol CVG Grp CH-8092 Zurich Switzerland Google Res Zurich CH-8092 Zurich Switzerland Swiss Fed Inst Technol CVL Zurich Switzerland PSI Villigen Switzerland Katholieke Univ Leuven Leuven Belgium
This letter presents a real-time online vision framework to jointly recover an indoor scene's 3d structure and semantic label. Given noisy depth maps, a camera trajectory, and 2d semantic labels at train time, the... 详细信息
来源: 评论
Learning Virtual View Selection for 3d Scene semantic segmentation
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2024年 33卷 4159-4172页
作者: Mu, Tai-Jiang Shen, Ming-Yuan Lai, Yu-Kun Hu, Shi-Min Tsinghua Univ Minist Educ Key Lab Pervas Comp Beijing 100084 Peoples R China Tsinghua Univ Dept Comp Sci & Technol Beijing 100084 Peoples R China Cardiff Univ Sch Comp Sci & Informat Cardiff CF24 4AG Wales
2d-3d joint learning is essential and effective for fundamental 3d vision tasks, such as 3d semantic segmentation, due to the complementary information these two visual modalities contain. Most current 3d scene semant... 详细信息
来源: 评论
Efficient 3d Scene semantic segmentation via Active Learning on Rendered 2d Images
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2023年 32卷 3521-3535页
作者: Rong, Mengqi Cui, Hainan Shen, Shuhan Chinese Acad Sci Inst Automat Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China CASIA SenseTime Res Grp Beijing 100190 Peoples R China
Inspired by Active Learning and 2d-3d semantic fusion, we proposed a novel framework for 3d scene semantic segmentation based on rendered 2d images, which could efficiently achieve semantic segmentation of any large-s... 详细信息
来源: 评论
deep Learning-Based 3d Instance and semantic segmentation: A Review
收藏 引用
Journal on Artificial Intelligence 2022年 第2期4卷 99-114页
作者: Siddiqui Muhammad Yasir Hyunsik Ahn Department of Robot System Engineering Tongmyong UniversityBusan48520Korea School of Artificial Intelligence Tongmyong UniversityBusan48520Korea
The process of segmenting point cloud data into several homogeneous areas with points in the same region having the same attributes is known as 3d *** is challenging with point cloud data due to substantial redundanc... 详细信息
来源: 评论
Seg-invRender: fusing semantic segmentation based on NeRF for inverse rendering considering shadows
收藏 引用
VISUAL COMPUTER 2025年 第7期41卷 4851-4864页
作者: Wang, Jianuo Li, Huawei Chen, Yumin Wuhan Univ Sch Resource & Environm Sci Wuhan 430079 Peoples R China Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China
Inverse rendering remains a challenging problem in computer vision, but the recent advance in implicit neural rendering methods has introduced new ideas. Most current related works decompose the geometry, illumination... 详细信息
来源: 评论
HFA-Net: hybrid feature-aware network for large-scale point cloud semantic segmentation
收藏 引用
ARTIFICIAL INTELLIGENCE REVIEW 2025年 第4期58卷 1-34页
作者: Wen, Changji Zhang, Long Ren, Junfeng Hong, Rundong Li, Chenshuang Yang, Ce Lv, Yanfeng Chen, Hongbing Yang, Ning Jilin Agr Univ Coll Informat & Technol Changchun Peoples R China Jiangsu Univ Minist Educ Key Lab Modern Agr Equipment & Technol Zhenjiang Peoples R China Chinese Acad Sci Inst Automat Beijing Peoples R China Univ Minnesota Coll Food Agr & Nat Resource Sci St Paul MN USA
semantic segmentation of large-scale point clouds in 3d computer vision is a challenging problem. Existing feature extraction modules often emphasize learning local geometry while not giving adequate consideration to ... 详细信息
来源: 评论