咨询与建议

限定检索结果

文献类型

  • 50 篇 期刊文献
  • 46 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 98 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 94 篇 工学
    • 67 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 11 篇 测绘科学与技术
    • 9 篇 控制科学与工程
    • 9 篇 软件工程
    • 7 篇 信息与通信工程
    • 7 篇 土木工程
    • 6 篇 建筑学
    • 5 篇 环境科学与工程(可...
    • 4 篇 交通运输工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 23 篇 医学
    • 20 篇 临床医学
    • 5 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 13 篇 理学
    • 7 篇 地球物理学
    • 3 篇 生物学
    • 2 篇 数学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 地理学
  • 3 篇 农学
    • 3 篇 作物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 文学
    • 2 篇 新闻传播学

主题

  • 98 篇 3d semantic segm...
  • 16 篇 point cloud
  • 15 篇 deep learning
  • 10 篇 three-dimensiona...
  • 10 篇 point clouds
  • 9 篇 3d object detect...
  • 7 篇 semantics
  • 6 篇 semantic segment...
  • 6 篇 3d instance segm...
  • 5 篇 task analysis
  • 5 篇 lidar
  • 5 篇 multi-modal fusi...
  • 4 篇 autonomous drivi...
  • 4 篇 3d point cloud
  • 4 篇 3d scene underst...
  • 4 篇 feature extracti...
  • 4 篇 point cloud comp...
  • 3 篇 unsupervised dom...
  • 3 篇 transformers
  • 3 篇 3d reconstructio...

机构

  • 3 篇 univ chinese aca...
  • 3 篇 univ hong kong p...
  • 3 篇 tsinghua univ pe...
  • 3 篇 east china norma...
  • 2 篇 swiss fed inst t...
  • 2 篇 yonsei univ sch ...
  • 2 篇 chinese acad sci...
  • 2 篇 southeast univ s...
  • 2 篇 hku peoples r ch...
  • 2 篇 china univ geosc...
  • 2 篇 xiongan inst inn...
  • 2 篇 china univ geosc...
  • 2 篇 tech univ munich...
  • 2 篇 univ chinese aca...
  • 2 篇 natl univ singap...
  • 1 篇 east china norma...
  • 1 篇 karlsruhe inst t...
  • 1 篇 casia sensetime ...
  • 1 篇 sharper shape sa...
  • 1 篇 cuhk sz peoples ...

作者

  • 4 篇 jiang li
  • 4 篇 wu xiaoyang
  • 3 篇 kim hyoungkwan
  • 3 篇 qu yanyun
  • 3 篇 xie yuan
  • 3 篇 kim juhyeon
  • 3 篇 zhang xiaolin
  • 3 篇 kim yohan
  • 3 篇 li jiamao
  • 3 篇 zhao hengshuang
  • 2 篇 ni peizhou
  • 2 篇 peters torben
  • 2 篇 zhang guanghui
  • 2 篇 litany or
  • 2 篇 jiang tao
  • 2 篇 peng bohao
  • 2 篇 lee gim hee
  • 2 篇 weigel hendrik
  • 2 篇 wan jie
  • 2 篇 beyerer juergen

语言

  • 94 篇 英文
  • 4 篇 其他
检索条件"主题词=3D semantic segmentation"
98 条 记 录,以下是41-50 订阅
排序:
3d-NOd: 3d new organ detection in plant growth by a spatiotemporal point cloud deep segmentation framework
收藏 引用
PLANT PHENOMICS 2025年 第1期7卷
作者: Li, dawei Ahmed, Foysal Wang, Zhanjiang Donghua Univ Coll Informat Sci & Technol Shanghai 201620 Peoples R China Donghua Univ State Key Lab Adv Fiber Mat SKLAFM Shanghai 201620 Peoples R China Donghua Univ Engn Res Ctr Digitized Text & Fash Technol Minist Educ Shanghai 201620 Peoples R China
Automatic plant growth monitoring is an important task in modern agriculture for maintaining high crop yield and boosting the breeding procedure. The advancement of 3d sensing technology has made 3d point clouds to be... 详细信息
来源: 评论
Uni-to-Multi Modal Knowledge distillation for Bidirectional LidAR-Camera semantic segmentation
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS ANd MACHINE INTELLIGENCE 2024年 第12期46卷 11059-11072页
作者: Sun, Tianfang Zhang, Zhizhong Tan, Xin Peng, Yong Qu, Yanyun Xie, Yuan East China Normal Univ Sch Comp Sci & Technol Shanghai 200060 Peoples R China Shanghai Key Lab Comp Software Evaluating & Testi Shanghai 200240 Peoples R China Cent South Univ Sch Traff & Transportat Engn Changsha 410017 Peoples R China Xiamen Univ Dept Comp Sci & Technol Xiamen 361005 Peoples R China
Combining LidAR points and images for robust semantic segmentation has shown great potential. However, the heterogeneity between the two modalities (e.g. the density, the field of view) poses challenges in establishin... 详细信息
来源: 评论
deep learning based 3d segmentation in computer vision: A survey
收藏 引用
INFORMATION FUSION 2025年 115卷
作者: He, Yong Yu, Hongshan Liu, Xiaoyan Yang, Zhengeng Sun, Wei Anwar, Saeed Mian, Ajmal Hunan Univ Quanzhou Inst Ind Design & Machine Intelligence In Coll Elect & Informat Engn Sch Robot Lushan South Rd Changsha 410082 Hunan Peoples R China Hunan Normal Univ Lushan South Rd Changsha 410081 Hunan Peoples R China Australian Natl Univ Canberra ACT 2600 Australia Univ Western Australia 35 Stirling Hwy Perth WA 6009 Australia
3d segmentation is a fundamental and challenging problem in computer vision with applications in autonomous driving and robotics. It has received significant attention from the computer vision, graphics and machine le... 详细信息
来源: 评论
A domain adaptation framework for cross-modality SAR 3d reconstruction point clouds segmentation utilizing LidAR data
收藏 引用
INTERNATIONAL JOURNAL OF APPLIEd EARTH OBSERVATION ANd GEOINFORMATION 2024年 133卷
作者: Wang, Muhan Qiu, Xiaolan Zhang, Zhe Gao, Silin Chinese Acad Sci Aerosp Informat Res Inst Beijing 100094 Peoples R China China Natl Key Lab Microwave Imaging Beijing 100190 Peoples R China Key Lab Technol Geospatial Informat Proc & Applica Beijing 100090 Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100094 Peoples R China Suzhou Key Lab Microwave Imaging Proc & Applicat T Suzhou 215128 Peoples R China Suzhou Aerosp Informat Res Inst Suzhou 215128 Peoples R China
Synthetic aperture radar (SAR) 3d point clouds reconstruction can eliminate the problems of layover in 2d SAR image projections, the recognition of the reconstructed point cloud can significantly enhance target identi... 详细信息
来源: 评论
3d multi-scale feature extraction and recalibration network for spinal structure and lesion segmentation
收藏 引用
ACTA RAdIOLOGICA 2023年 第12期64卷 3015-3023页
作者: Wang, Hongjie Chen, Yingjin Jiang, Tao Bian, Huwei Shen, Xing Nanjing Univ Aeronaut & Astronaut State Key Lab Mech & Control Mech Struct Nanjing Peoples R China Changzhou Tradit Chinese Med Hosp Dept Orthopaed Changzhou Jiangsu Peoples R China
Background Automatic segmentation has emerged as a promising technique for the diagnosis of spinal conditions. Purpose To design and evaluate a deep convolution network for segmenting the intervertebral disc, spinal c... 详细信息
来源: 评论
dPRNet: deep 3d Point Based Residual Network for semantic segmentation and Classification of 3d Point Clouds
收藏 引用
IEEE ACCESS 2019年 7卷 68892-68904页
作者: Arshad, Saira Shahzad, Muhammad Riaz, Qaiser Fraz, Muhammad Moazam Natl Univ Sci & Technol Sch Elect Engn & Comp Sci Islamabad 44000 Pakistan Natl Ctr Artificial Intelligence Deep Learning Lab Islamabad 44000 Pakistan Univ Warwick Dept Comp Sci Coventry CV4 7AL W Midlands England Alan Turing Inst British Lib London NW1 2DB England
Point clouds are an important type of geometric data obtained from a variety of 3d sensors. They do not have an explicit neighborhood structure and therefore several researchers often perform a voxelization step to ob... 详细信息
来源: 评论
ECLAIR: A High-Fidelity Aerial LidAR dataset for semantic segmentation
ECLAIR: A High-Fidelity Aerial LiDAR Dataset for Semantic Se...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Melekhov, Iaroslav Umashankar, Anand Kim, Hyeong-Jin Serkov, Vladislav Argyle, dusty Sharper Shape Salt Lake City UT 84115 USA Aalto Univ Espoo Finland
We introduce ECLAIR (Extended Classification of Lidar for AI Recognition), a new outdoor large-scale aerial LidAR dataset designed specifically for advancing research in point cloud semantic segmentation. As the most ... 详细信息
来源: 评论
Meta-RangeSeg: LidAR Sequence semantic segmentation Using Multiple Feature Aggregation
收藏 引用
IEEE ROBOTICS ANd AUTOMATION LETTERS 2022年 第4期7卷 9739-9746页
作者: Wang, Song Zhu, Jianke Zhang, Ruixiang Zhejiang Univ Coll Comp Sci Hangzhou 310027 Peoples R China Alibaba Zhejiang Univ Joint Res Inst Frontier Tec Hangzhou 310027 Peoples R China Hikvis Res Inst Hangzhou 310051 Peoples R China
LidAR sensor is essential to the perception system in autonomous vehicles and intelligent robots. To fulfill the real-time requirements in real-world applications, it is necessary to efficiently segment the LidAR scan... 详细信息
来源: 评论
Clustering-Based Refinement for 3d Human Body Parts segmentation  17th
Clustering-Based Refinement for 3D Human Body Parts Segmenta...
收藏 引用
17th International Conference on Intelligent Autonomous Systems (IAS)
作者: Barcellona, Leonardo Terreran, Matteo Evangelista, daniele Ghidoni, Stefano Univ Padua Dept Informat Engn DEI Padua Italy
A common approach to address human body parts segmentation on 3d data involves the use of a 2d segmentation network and 3d projection. Following this approach, several errors could be introduced in the final 3d segmen... 详细信息
来源: 评论
Swin3d: A pretrained transformer backbone for 3d indoor scene understanding
收藏 引用
Computational Visual Media 2025年 第1期11卷 83-101页
作者: Yu-Qi Yang Yu-Xiao Guo Jian-Yu Xiong Yang Liu Hao Pan Peng-Shuai Wang Xin Tong Baining Guo Institute for Advanced Study Tsinghua UniversityBeijing 100084China Tsinghua Shenzhen International Graduate School Tsinghua UniversityShenzhen 518055China Internet Graphics Group Microsoft Research AsiaBeijing 100080China Wangxuan Institute of Computer Technology Peking UniversityBeijing 100080China
The use of pretrained backbones with finetuning has shown success for 2d vision and natural language processing tasks,with advantages over taskspecific *** this paper,we introduce a pretrained 3d backbone,called Swin3... 详细信息
来源: 评论