咨询与建议

限定检索结果

文献类型

  • 50 篇 期刊文献
  • 46 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 98 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 94 篇 工学
    • 67 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 11 篇 测绘科学与技术
    • 9 篇 控制科学与工程
    • 9 篇 软件工程
    • 7 篇 信息与通信工程
    • 7 篇 土木工程
    • 6 篇 建筑学
    • 5 篇 环境科学与工程(可...
    • 4 篇 交通运输工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 23 篇 医学
    • 20 篇 临床医学
    • 5 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 13 篇 理学
    • 7 篇 地球物理学
    • 3 篇 生物学
    • 2 篇 数学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 地理学
  • 3 篇 农学
    • 3 篇 作物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 文学
    • 2 篇 新闻传播学

主题

  • 98 篇 3d semantic segm...
  • 16 篇 point cloud
  • 15 篇 deep learning
  • 10 篇 three-dimensiona...
  • 10 篇 point clouds
  • 9 篇 3d object detect...
  • 7 篇 semantics
  • 6 篇 semantic segment...
  • 6 篇 3d instance segm...
  • 5 篇 task analysis
  • 5 篇 lidar
  • 5 篇 multi-modal fusi...
  • 4 篇 autonomous drivi...
  • 4 篇 3d point cloud
  • 4 篇 3d scene underst...
  • 4 篇 feature extracti...
  • 4 篇 point cloud comp...
  • 3 篇 unsupervised dom...
  • 3 篇 transformers
  • 3 篇 3d reconstructio...

机构

  • 3 篇 univ chinese aca...
  • 3 篇 univ hong kong p...
  • 3 篇 tsinghua univ pe...
  • 3 篇 east china norma...
  • 2 篇 swiss fed inst t...
  • 2 篇 yonsei univ sch ...
  • 2 篇 chinese acad sci...
  • 2 篇 southeast univ s...
  • 2 篇 hku peoples r ch...
  • 2 篇 china univ geosc...
  • 2 篇 xiongan inst inn...
  • 2 篇 china univ geosc...
  • 2 篇 tech univ munich...
  • 2 篇 univ chinese aca...
  • 2 篇 natl univ singap...
  • 1 篇 east china norma...
  • 1 篇 karlsruhe inst t...
  • 1 篇 casia sensetime ...
  • 1 篇 sharper shape sa...
  • 1 篇 cuhk sz peoples ...

作者

  • 4 篇 jiang li
  • 4 篇 wu xiaoyang
  • 3 篇 kim hyoungkwan
  • 3 篇 qu yanyun
  • 3 篇 xie yuan
  • 3 篇 kim juhyeon
  • 3 篇 zhang xiaolin
  • 3 篇 kim yohan
  • 3 篇 li jiamao
  • 3 篇 zhao hengshuang
  • 2 篇 ni peizhou
  • 2 篇 peters torben
  • 2 篇 zhang guanghui
  • 2 篇 litany or
  • 2 篇 jiang tao
  • 2 篇 peng bohao
  • 2 篇 lee gim hee
  • 2 篇 weigel hendrik
  • 2 篇 wan jie
  • 2 篇 beyerer juergen

语言

  • 94 篇 英文
  • 4 篇 其他
检索条件"主题词=3D semantic segmentation"
98 条 记 录,以下是61-70 订阅
排序:
MPCNet: Improved MeshSegNet Based on Position Encoding and Channel Attention
收藏 引用
IEEE ACCESS 2023年 11卷 23326-23334页
作者: Hu, Hanqing Li, Zhengxun Gao, Weichao Beijing Informat Sci & Technol Univ Sch Econ & Management Beijing 100192 Peoples R China Beijing Key Lab Big Data Decis Making Green Dev Beijing 100192 Peoples R China
In the process of orthodontic treatment, it is a very important step to accurately segment each tooth and jaw model with computer assistance. The use of deep learning technology methods for tooth segmentation can not ... 详细信息
来源: 评论
OctFormer: Octree-based Transformers for 3d Point Clouds
收藏 引用
ACM TRANSACTIONS ON GRAPHICS 2023年 第4期42卷 1-11页
作者: Wang, Peng-Shuai Peking Univ Beijing Peoples R China
We propose octree-based transformers, named OctFormer, for 3d point cloud learning. OctFormer can not only serve as a general and effective backbone for 3d point cloud segmentation and object detection but also have l... 详细信息
来源: 评论
VoxelScape: Large Scale Simulated 3d Point Cloud dataset of Urban Traffic Environments
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2023年 第9期24卷 9435-9448页
作者: Saleh, Khaled Hossny, Mohammed Abobakr, Ahmed Attia, Mohammed Iskander, Julie Univ Newcastle Sch Informat & Phys Sci Callaghan NSW 2308 Australia Univ New South Wales Sch Engn & IT Sydney NSW 2052 Australia Cairo Univ Fac Comp & Artificial Intelligence Giza 2613 Egypt Alexandria Univ Med Res Inst Alexandria 5424041 Egypt Walter & Eliza Hall Inst Med Res Parkville Vic 3052 Australia
Having a profound understanding of the surrounding environment is considered one of the crucial tasks for the reliable operation of future self-driving cars. Light detection and Ranging (LidAR) sensor plays a critical... 详细信息
来源: 评论
Robust detection, segmentation, and Metrology of High Bandwidth Memory 3d Scans Using an Improved Semi-Supervised deep Learning Approach
收藏 引用
SENSORS 2023年 第12期23卷 5470-5470页
作者: Wang, Jie Chang, Richard Zhao, Ziyuan Pahwa, Ramanpreet Singh ASTAR Inst Infocomm Res I2R 1 Fusionopolis Way21-01Connexis South Tower Singapore 138632 Singapore
Recent advancements in 3d deep learning have led to significant progress in improving accuracy and reducing processing time, with applications spanning various domains such as medical imaging, robotics, and autonomous... 详细信息
来源: 评论
Semi-automated dataset creation for semantic and instance segmentation of industrial point clouds.
收藏 引用
COMPUTERS IN INdUSTRY 2024年 155卷
作者: Birkeland, August Asheim Udnaes, Marius Norwegian Univ Sci & Technol Dept Comp Sci Sem Saelands Vei 9 N-7034 Trondheim Norway Cognite AS Oksenoyveien 10 N-1366 Lysaker Norway
The current practice for creating as-built geometric digital Twins (gdTs) of industrial facilities is both labour-intensive and error-prone. In aged industries it typically involves manually crafting a CAd or BIM mode... 详细信息
来源: 评论
NeiEA-NET: semantic segmentation of large-scale point cloud scene via neighbor enhancement and aggregation
收藏 引用
INTERNATIONAL JOURNAL OF APPLIEd EARTH OBSERVATION ANd GEOINFORMATION 2023年 119卷
作者: Xu, Yongyang Tang, Wei Zeng, Ziyin Wu, Weichao Wan, Jie Guo, Han Xie, Zhong China Univ Geosci Sch Comp Sci Wuhan Peoples R China State Key Lab Geoinformat Engn Xian 710054 Peoples R China Guangdong Hong Kong Macau Joint Lab Smart Cities Hong Kong 518000 Guangdong Peoples R China China Univ Geosci Key Lab geol & evaluat Minist Educ Wuhan Peoples R China Minist Nat Resources Key Lab Urban Land Resources Monitoring & Simulat Shenzhen 518034 Peoples R China
3d point cloud semantic segmentation is crucial for 3d environment perception and scene understanding, where learning of local context in point clouds is a crucial challenge. Existing approaches typically explore loca... 详细信息
来源: 评论
GOV-NeSF: Generalizable Open-Vocabulary Neural semantic Fields
GOV-NeSF: Generalizable Open-Vocabulary Neural Semantic Fiel...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Wang, Yunsong Chen, Hanlin Lee, Gim Hee Natl Univ Singapore Dept Comp Sci Singapore Singapore
Recent advancements in vision-language foundation models have significantly enhanced open-vocabulary 3d scene understanding. However, the generalizability of existing methods is constrained due to their framework desi... 详细信息
来源: 评论
Towards Large-scale 3d Representation Learning with Multi-dataset Point Prompt Training
Towards Large-scale 3D Representation Learning with Multi-da...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Wu, Xiaoyang Tian, Zhuotao Wen, Xin Peng, Bohao Liu, Xihui Yu, Kaicheng Zhao, Hengshuang Univ Hong Kong Hong Kong Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Westlake Univ Hangzhou Peoples R China Alibaba Grp Hangzhou Peoples R China
The rapid advancement of deep learning models is often attributed to their ability to leverage massive training data. In contrast, such privilege has not yet fully benefited 3d deep learning, mainly due to the limited... 详细信息
来源: 评论
Point Transformer V3: Simpler, Faster, Stronger
Point Transformer V3: Simpler, Faster, Stronger
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Wu, Xiaoyang Jiang, Li Wang, Peng-Shuai Liu, Zhijian Liu, Xihui Qiao, Yu Ouyang, Wanli He, Tong Zhao, Hengshuang HKU Hong Kong Peoples R China SH AI Lab Shanghai Peoples R China CUHK SZ Shenzhen Peoples R China PKU Beijing Peoples R China MIT Cambridge MA 02139 USA
This paper is not motivated to seek innovation within the attention mechanism. Instead, it focuses on overcoming the existing trade-offs between accuracy and efficiency within the context of point cloud processing, le... 详细信息
来源: 评论
Multi-Space Alignments Towards Universal LidAR segmentation
Multi-Space Alignments Towards Universal LiDAR Segmentation
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Liu, Youquan Kong, Lingdong Wu, Xiaoyang Chen, Runnan Li, Xin Pane, Liang Liu, Ziwei Ma, Yuexin ShanghaiTech Univ Shanghai Peoples R China Shanghai AI Lab Shanghai Peoples R China Natl Univ Singapore Singapore Singapore Univ Hong Kong Hong Kong Peoples R China East China Normal Univ Shanghai Peoples R China Nanyang Technol Univ S Lab Singapore Singapore
A unified and versatile LidAR segmentation model with strong robustness and generalizability is desirable for safe autonomous driving perception. This work presents M3Net, a one-of-a-kind framework for fulfilling mult... 详细信息
来源: 评论