咨询与建议

限定检索结果

文献类型

  • 50 篇 期刊文献
  • 46 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 98 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 94 篇 工学
    • 67 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 11 篇 测绘科学与技术
    • 9 篇 控制科学与工程
    • 9 篇 软件工程
    • 7 篇 信息与通信工程
    • 7 篇 土木工程
    • 6 篇 建筑学
    • 5 篇 环境科学与工程(可...
    • 4 篇 交通运输工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 23 篇 医学
    • 20 篇 临床医学
    • 5 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 13 篇 理学
    • 7 篇 地球物理学
    • 3 篇 生物学
    • 2 篇 数学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 地理学
  • 3 篇 农学
    • 3 篇 作物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 文学
    • 2 篇 新闻传播学

主题

  • 98 篇 3d semantic segm...
  • 16 篇 point cloud
  • 15 篇 deep learning
  • 10 篇 three-dimensiona...
  • 10 篇 point clouds
  • 9 篇 3d object detect...
  • 7 篇 semantics
  • 6 篇 semantic segment...
  • 6 篇 3d instance segm...
  • 5 篇 task analysis
  • 5 篇 lidar
  • 5 篇 multi-modal fusi...
  • 4 篇 autonomous drivi...
  • 4 篇 3d point cloud
  • 4 篇 3d scene underst...
  • 4 篇 feature extracti...
  • 4 篇 point cloud comp...
  • 3 篇 unsupervised dom...
  • 3 篇 transformers
  • 3 篇 3d reconstructio...

机构

  • 3 篇 univ chinese aca...
  • 3 篇 univ hong kong p...
  • 3 篇 tsinghua univ pe...
  • 3 篇 east china norma...
  • 2 篇 swiss fed inst t...
  • 2 篇 yonsei univ sch ...
  • 2 篇 chinese acad sci...
  • 2 篇 southeast univ s...
  • 2 篇 hku peoples r ch...
  • 2 篇 china univ geosc...
  • 2 篇 xiongan inst inn...
  • 2 篇 china univ geosc...
  • 2 篇 tech univ munich...
  • 2 篇 univ chinese aca...
  • 2 篇 natl univ singap...
  • 1 篇 east china norma...
  • 1 篇 karlsruhe inst t...
  • 1 篇 casia sensetime ...
  • 1 篇 sharper shape sa...
  • 1 篇 cuhk sz peoples ...

作者

  • 4 篇 jiang li
  • 4 篇 wu xiaoyang
  • 3 篇 kim hyoungkwan
  • 3 篇 qu yanyun
  • 3 篇 xie yuan
  • 3 篇 kim juhyeon
  • 3 篇 zhang xiaolin
  • 3 篇 kim yohan
  • 3 篇 li jiamao
  • 3 篇 zhao hengshuang
  • 2 篇 ni peizhou
  • 2 篇 peters torben
  • 2 篇 zhang guanghui
  • 2 篇 litany or
  • 2 篇 jiang tao
  • 2 篇 peng bohao
  • 2 篇 lee gim hee
  • 2 篇 weigel hendrik
  • 2 篇 wan jie
  • 2 篇 beyerer juergen

语言

  • 94 篇 英文
  • 4 篇 其他
检索条件"主题词=3D semantic segmentation"
98 条 记 录,以下是81-90 订阅
排序:
Attention-guided LidAR segmentation and odometry using image-to-point cloud saliency transfer
收藏 引用
MULTIMEdIA SYSTEMS 2024年 第4期30卷 188-188页
作者: ding, Guanqun Imamoglu, Nevrez Caglayan, Ali Murakawa, Masahiro Nakamura, Ryosuke Univ Tsukuba Grad Sch Sci & Technol Tsukuba Ibaraki 3058577 Japan Natl Inst Adv Ind Sci & Technol Digital Architecture Res Ctr DigiARC Tokyo 1350064 Japan Natl Inst Adv Ind Sci & Technol CNRS AIST Joint Robot Lab JRL Tsukuba Ibaraki 3058560 Japan Natl Inst Adv Ind Sci & Technol Artificial Intelligence Res Ctr AIRC Tokyo 1350064 Japan
LidAR odometry estimation and 3d semantic segmentation are crucial for autonomous driving, which has achieved remarkable advances recently. However, these tasks are challenging due to the imbalance of points in differ... 详细信息
来源: 评论
Enhancing Autonomous Train Safety Through A Priori-Map Based Perception  4th
Enhancing Autonomous Train Safety Through A Priori-Map Based...
收藏 引用
4th International Conference on Reliability, Safety, and Security of Railway Systems (RSSRail)
作者: Mahtani, Ankur Chouchani, Nadia Herbreteau, Maxime Rafin, denis FCS Railenium 180 Rue Joseph Louis Lagrange F-59300 Famars France Thales Serv Numer SAS 290 Allee Lac F-31670 Labege France SpirOps 8 Passage Bonne Graine F-75011 Paris France
Autonomous driving tends to increase use of perception as a tool for analyzing the environment before making a decision that could impact driving. However, recent techniques based on machine learning do not provide th... 详细信息
来源: 评论
data Efficient 3d Learner via Knowledge Transferred from 2d Model  1
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: Yu, Ping-Chung Sun, Cheng Sun, Min Natl Tsing Hua Univ Hsinchu Taiwan
Collecting and labeling the registered 3d point cloud is costly. As a result, 3d resources for training are typically limited in quantity compared to the 2d images counterpart. In this work, we deal with the data scar... 详细信息
来源: 评论
AMLP-Conv, a 3d Axial Long-range Interaction Multilayer Perceptron for CNNs  13th
AMLP-Conv, a 3D Axial Long-range Interaction Multilayer Perc...
收藏 引用
13th International Workshop on Machine Learning in Medical Imaging (MLMI)
作者: Bonheur, Savinien Pienn, Michael Olschewski, Horst Bischof, Horst Urschler, Martin Ludwig Boltzmann Inst Lung Vasc Res Graz Austria Graz Univ Technol Inst Comp Graph & Vis Graz Austria Med Univ Graz Dept Internal Med Graz Austria Univ Auckland Sch Comp Sci Auckland New Zealand
While Convolutional neural networks (CNN) have been the backbone of medical image analysis for years, their limited long-range interaction restrains their ability to encode long distance anatomical relationships. On t... 详细信息
来源: 评论
4dContrast: Contrastive Learning with dynamic Correspondences for 3d Scene Understanding  17th
4DContrast: Contrastive Learning with Dynamic Correspondence...
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: Chen, Yujin Niessner, Matthias dai, Angela Tech Univ Munich Munich Germany
We present a new approach to instill 4d dynamic object priors into learned 3d representations by unsupervised pre-training. We observe that dynamic movement of an object through an environment provides important cues ... 详细信息
来源: 评论
Automated bridge component recognition using close-range images from unmanned aerial vehicles
收藏 引用
ENGINEERING STRUCTURES 2023年 274卷 1页
作者: Kim, Hyunjun Narazaki, Yasutaka Spencer Jr, Billie F. Seoul Natl Univ Sci & Technol Dept Civil Engn Seoul 01811 South Korea Zhejiang Univ Univ Illinois Urbana Champaign Inst Haining 314400 Peoples R China Univ Illinois Dept Civil & Environm Engn Urbana IL 61801 USA
Unmanned aerial vehicles (UAVs), in conjunction with computer vision techniques, have shown great potential for bridge inspections. Close-range images captured in proximity to the structural surface are generally requ... 详细信息
来源: 评论
3d reconstruction of large-scale scaffolds with synthetic data generation and an upsampling adversarial network
收藏 引用
AUTOMATION IN CONSTRUCTION 2023年 156卷
作者: Kim, Juhyeon Kim, Jeehoon Kim, Yohan Kim, Hyoungkwan Yonsei Univ Sch Civil & Environm Engn Seoul South Korea
Falls from scaffolds cause the majority of accidents and fatalities at construction sites. A deep learning-based 3d reconstruction technology could provide a solution to prevent such fatalities through automated scaff... 详细信息
来源: 评论
A fast end-to-end method for automatic interior progress evaluation using panoramic images
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2023年 第PartA期126卷
作者: Fang, Xin Li, Heng Wu, Haitao Fan, Lang Kong, Ting Wu, Yue Hong Kong Polytech Univ Dept Bldg & Real Estate Hung Hom Kowloon Hong Kong 999077 Peoples R China
Interior construction makes up a large portion of project budget and time and is more prone to schedule delays. Most research efforts on progress management focus on exterior environment, while few on interior constru... 详细信息
来源: 评论
Mix3d: Out-of-Context data Augmentation for 3d Scenes  9
Mix3D: Out-of-Context Data Augmentation for 3D Scenes
收藏 引用
9th International Conference on 3d Vision (3dV)
作者: Nekrasov, Alexey Schult, Jonas Litany, Or Leibe, Bastian Engelmann, Francis Rhein Westfal TH Aachen Aachen Germany NVIDIA Sunnyvale CA USA ETH AI Ctr Zurich Switzerland
We present Mix3d, a data augmentation technique for segmenting large-scale 3d scenes. Since scene context helps reasoning about object semantics, current works focus on models with large capacity and receptive fields ... 详细信息
来源: 评论
deep learning-based 3d reconstruction of scaffolds using a robot dog
收藏 引用
AUTOMATION IN CONSTRUCTION 2022年 第0期134卷 104092-104092页
作者: Kim, Juhyeon Chung, duho Kim, Yohan Kim, Hyoungkwan Yonsei Univ Sch Civil & Environm Engn Seoul South Korea
Although a scaffold is an essential structure in the construction industry, it may also be a dangerous factor that causes fatalities. However, the process of monitoring the scaffold is labor-intensive because it is co... 详细信息
来源: 评论