咨询与建议

限定检索结果

文献类型

  • 68 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 76 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 75 篇 工学
    • 70 篇 控制科学与工程
    • 65 篇 电气工程
    • 7 篇 计算机科学与技术...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 信息与通信工程
    • 1 篇 生物医学工程(可授...
  • 1 篇 理学
    • 1 篇 化学
    • 1 篇 生物学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 76 篇 ai-enabled robot...
  • 18 篇 robots
  • 14 篇 reinforcement le...
  • 7 篇 robot sensing sy...
  • 6 篇 planning
  • 6 篇 deep learning me...
  • 6 篇 human-centered r...
  • 5 篇 cognition
  • 5 篇 task analysis
  • 5 篇 three-dimensiona...
  • 5 篇 autonomous agent...
  • 5 篇 robot safety
  • 5 篇 planning under u...
  • 4 篇 manipulation pla...
  • 4 篇 object detection
  • 4 篇 learning from de...
  • 4 篇 deep learning fo...
  • 4 篇 machine learning...
  • 4 篇 trajectory
  • 4 篇 robot kinematics

机构

  • 2 篇 univ washington ...
  • 2 篇 georgia inst tec...
  • 2 篇 univ washington ...
  • 2 篇 univ maryland co...
  • 2 篇 natl univ singap...
  • 1 篇 canadian surg te...
  • 1 篇 univ sci & techn...
  • 1 篇 seoul natl univ ...
  • 1 篇 imt sch adv stud...
  • 1 篇 univ brescia dip...
  • 1 篇 univ manchester ...
  • 1 篇 univ toronto ins...
  • 1 篇 univ essex ai in...
  • 1 篇 harvard univ joh...
  • 1 篇 univ texas el pa...
  • 1 篇 cyber valley d-7...
  • 1 篇 worcester polyte...
  • 1 篇 georgia inst tec...
  • 1 篇 univ stuttgart i...
  • 1 篇 sun yat sen univ...

作者

  • 3 篇 manocha dinesh
  • 3 篇 truong joanne
  • 3 篇 batra dhruv
  • 2 篇 bimbraw keshav
  • 2 篇 samani ekta u.
  • 2 篇 zhang ziming
  • 2 篇 banerjee ashis g...
  • 2 篇 cesta amedeo
  • 2 篇 chernova sonia
  • 1 篇 gong xinglong
  • 1 篇 qiu jiaxin
  • 1 篇 choi sungjoon
  • 1 篇 wiesmann louis
  • 1 篇 zanchettin andre...
  • 1 篇 youn wonkeun
  • 1 篇 ying xianghua
  • 1 篇 asfour tamim
  • 1 篇 chang minsuk
  • 1 篇 geng haoran
  • 1 篇 maalouf alaa

语言

  • 76 篇 英文
检索条件"主题词=AI-enabled robotics"
76 条 记 录,以下是1-10 订阅
排序:
TALKER: A Task-Activated Language Model Based Knowledge-Extension Reasoning System
收藏 引用
IEEE robotics AND AUTOMATION LETTERS 2025年 第2期10卷 1026-1033页
作者: Lou, Jiabin Shi, Rongye Lin, Yuxin Wang, Qunbo Wu, Wenjun Beihang Univ Beijing 100191 Peoples R China
Training drones to execute complex collective tasks via multi-agent reinforcement learning presents significant challenges. To address these challenges, this letter introduces the Task-Activated Language model-based K... 详细信息
来源: 评论
Modular Reinforcement Learning for a Quadrotor UAV With Decoupled Yaw Control
收藏 引用
IEEE robotics AND AUTOMATION LETTERS 2025年 第1期10卷 572-579页
作者: Yu, Beomyeol Lee, Taeyoung George Washington Univ Flight Dynam & Control Lab Mech & Aerosp Engn Washington DC 20051 USA
This letter presents modular reinforcement learning (RL) frameworks for the low-level control of a quadrotor, with direct control of yawing motion. While traditional monolithic RL approaches have been successfully app... 详细信息
来源: 评论
Probabilistically Correct Language-Based Multi-Robot Planning Using Conformal Prediction
收藏 引用
IEEE robotics AND AUTOMATION LETTERS 2025年 第1期10卷 160-167页
作者: Wang, Jun He, Guocheng Kantaros, Yiannis Washington Univ St Louis (WashU) Preston M Green Dept Elect & Syst Engn St Louis MO 63130 USA Vanderbilt Univ Dept Comp Sci Nashville TN 37240 USA
This paper addresses task planning problems for language-instructed robot teams. Tasks are expressed in natural language (NL), requiring the robots to apply their skills at various locations and semantic objects. Seve... 详细信息
来源: 评论
Make a Donut: Hierarchical EMD-Space Planning for Zero-Shot Deformable Manipulation With Tools
收藏 引用
IEEE robotics AND AUTOMATION LETTERS 2025年 第4期10卷 3270-3277页
作者: You, Yang Shen, William B. Deng, Congyue Geng, Haoran Wei, Songlin Wang, He Guibas, Leonidas Stanford Univ Dept Comp Sci Stanford CA 94305 USA Peking Univ CFCS Beijing 100871 Peoples R China
Deformable object manipulation stands as one of the most captivating yet formidable challenges in robotics. While previous techniques have predominantly relied on learning latent dynamics through demonstrations, typic... 详细信息
来源: 评论
LPM-Net: A Data-Driven Resource-Efficient Predictive Motion Planner for Mobile Robots
收藏 引用
NEURAL PROCESSING LETTERS 2025年 第1期57卷 1-15页
作者: Amirhosseini, Fakhreddin Nilforoushan, Zahra Mirtaheri, Seyedeh Leili Kharazmi Univ Elect & Comp Engn Dept Tehran Iran Univ Calabria Dept Informat Modeling Elect & Syst Engn DIMES Arcavacata Di Rende Italy
A data-driven predictive motion planner for mobile robots, referred to as LPM-Net, has been proposed in this paper. Conventional predictive motion planners are computationally expensive, often resulting in insufficien... 详细信息
来源: 评论
Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications
收藏 引用
IEEE robotics AND AUTOMATION LETTERS 2025年 第4期10卷 3190-3197页
作者: Zhang, Xilun Liu, Shiqi Huang, Peide Han, William Jongwon Lyu, Yiqi Xu, Mengdi Zhao, Ding Carnegie Mellon Univ Dept Mech Engn Pittsburgh PA 15213 USA
Sim-to-real transfer remains a significant challenge in robotics due to the discrepancies between simulated and real-world dynamics. Traditional methods like Domain Randomization often fail to capture fine-grained dyn... 详细信息
来源: 评论
Task Decomposition and Self-Evaluation Mechanisms for Home Healthcare Robots Using Large Language Models
收藏 引用
IEEE ACCESS 2025年 13卷 65726-65736页
作者: Liu, Liteng Zhang, Sen Jiang, Yangmin Guo, Jingzhen Zhao, Wenlong Univ Shanghai Sci & Technol Hlth Sci & Engn Shanghai 200093 Peoples R China Shanghai Univ Med & Hlth Sci Ctr Collaborat Res Shanghai 201318 Peoples R China Shanghai Jiao Tong Univ China Hosp Dev Inst Res Ctr Med Intelligent Dev Shanghai 200025 Peoples R China
A system leveraging Large Language Models (LLMs), is proposed to address the limitations of current models primarily used for conversational purposes. While user interactions are excelled by ChatGPT, instability and s... 详细信息
来源: 评论
Planning and Reasoning with 3D Deformable Objects for Hierarchical Text-to-3D Robotic Shaping
收藏 引用
IEEE robotics and Automation Letters 2025年 第6期10卷 6215-6222页
作者: Bartsch, Alison Farimani, Amir Barati Carnegie Mellon University Department of Mechanical Engineering United States
Deformable object manipulation remains a key challenge in developing autonomous robotic systems that can be successfully deployed in real-world scenarios. In this work, we explore the the task of sculpting clay into 3... 详细信息
来源: 评论
DRAGON: A Dialogue-Based Robot for Assistive Navigation With Visual Language Grounding
收藏 引用
IEEE robotics AND AUTOMATION LETTERS 2024年 第4期9卷 3712-3719页
作者: Liu, Shuijing Hasan, Aamir Hong, Kaiwen Wang, Runxuan Chang, Peixin Mizrachi, Zachary Lin, Justin McPherson, D. Livingston Rogers, Wendy A. Driggs-Campbell, Katherine Univ Illinois Dept Elect & Comp Engn Champaign IL 61820 USA Univ Illinois Dept Appl Hlth Sci Champaign IL 61820 USA
Persons with visual impairments (PwVI) have difficulties understanding and navigating spaces around them. Current wayfinding technologies either focus solely on navigation or provide limited communication about the en... 详细信息
来源: 评论
RobotGPT: Robot Manipulation Learning From ChatGPT
收藏 引用
IEEE robotics AND AUTOMATION LETTERS 2024年 第3期9卷 2543-2550页
作者: Jin, Yixiang Li, Dingzhe A, Yong Shi, Jun Hao, Peng Sun, Fuchun Zhang, Jianwei Fang, Bin Samsung Res China Beijing SRC B Beijing 100028 Peoples R China Tsinghua Univ Dept Comp Sci & Technol Beijing 100190 Peoples R China Univ Hamburg D-20148 Hamburg Germany Beijing Univ Posts & Telecommun Beijing 100876 Peoples R China
We present RobotGPT, an innovative decision framework for robotic manipulation that prioritizes stability and safety. The execution code generated by ChatGPT cannot guarantee the stability and safety of the system. Ch... 详细信息
来源: 评论