咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 18 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 16 篇 工学
    • 8 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 5 篇 控制科学与工程
    • 4 篇 石油与天然气工程
    • 3 篇 动力工程及工程热...
    • 2 篇 土木工程
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 信息与通信工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 公安技术
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 公共管理
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 理学
    • 1 篇 数学
  • 1 篇 医学
    • 1 篇 公共卫生与预防医...

主题

  • 18 篇 abnormal data de...
  • 2 篇 structural healt...
  • 2 篇 predictive model...
  • 2 篇 distribution int...
  • 1 篇 internet of thin...
  • 1 篇 support vector d...
  • 1 篇 wavelet transfor...
  • 1 篇 fuzzy logic
  • 1 篇 wind power
  • 1 篇 cyber security
  • 1 篇 crowdsourcing co...
  • 1 篇 classification m...
  • 1 篇 clustering algor...
  • 1 篇 bellows
  • 1 篇 data security
  • 1 篇 support vector m...
  • 1 篇 multiple operati...
  • 1 篇 traffic matrix a...
  • 1 篇 deep learning
  • 1 篇 outlier point pr...

机构

  • 1 篇 polish acad sci ...
  • 1 篇 guangzhou inst b...
  • 1 篇 shandong polytec...
  • 1 篇 beijing univ tec...
  • 1 篇 univ alberta dep...
  • 1 篇 school of electr...
  • 1 篇 school of electr...
  • 1 篇 hebei province k...
  • 1 篇 guangzhou univ r...
  • 1 篇 shijiazhuang uni...
  • 1 篇 continuing educa...
  • 1 篇 beijing univ tec...
  • 1 篇 hubei key lab ad...
  • 1 篇 xiamen minghan e...
  • 1 篇 jiangnan univ sc...
  • 1 篇 jinan engn polyt...
  • 1 篇 henan univ henan...
  • 1 篇 shenzhen transpo...
  • 1 篇 guangzhou univ s...
  • 1 篇 hebei province i...

作者

  • 1 篇 zhou shiyuan
  • 1 篇 fan yanling
  • 1 篇 li ji
  • 1 篇 wenqiang yue
  • 1 篇 lu zongxiang
  • 1 篇 xie chenxi
  • 1 篇 xingxing xing
  • 1 篇 wu min
  • 1 篇 wang guanghui
  • 1 篇 xin wei
  • 1 篇 qiao ying
  • 1 篇 wang kang
  • 1 篇 shao nan
  • 1 篇 sun meiting
  • 1 篇 yang haochen
  • 1 篇 ye xijun
  • 1 篇 xiabing zhou
  • 1 篇 haikun hong
  • 1 篇 li-an chen
  • 1 篇 wang zeyu

语言

  • 17 篇 英文
  • 1 篇 斯洛文尼亚文
  • 1 篇 其他
检索条件"主题词=Abnormal Data Detection"
18 条 记 录,以下是1-10 订阅
排序:
Novel abnormal data Mining and detection Algorithm for Intelligent Systems  4
Novel Abnormal Data Mining and Detection Algorithm for Intel...
收藏 引用
4th International Conference on Sentiment Analysis and Deep Learning, ICSADL 2025
作者: Xu, Shaomei Fan, Yanling Lin, Bing Continuing Education Service Center Shandong Institute of Commerce and Technology Shandong Jinan250103 China
In intelligent systems, as the amount of data increases, how to analyse data and extract abnormal information is an important task. Based on this, in order to improve the detection efficiency and accuracy of abnormal ... 详细信息
来源: 评论
abnormal data detection Based on Adaptive Sliding Window and Weighted Multiscale Local Outlier Factor for Machinery Health Monitoring
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2023年 第11期70卷 11725-11734页
作者: Xie, Qinglin Tao, Gongquan Xie, Chenxi Wen, Zefeng Southwest Jiaotong Univ State Key Lab Tract Power Chengdu 610031 Peoples R China
Identifying abnormal data to improve data quality is of great importance for machinery health monitoring (MHM). Existing abnormal data detection methods generally depend on appropriate parameter settings and prior kno... 详细信息
来源: 评论
abnormal data detection Based on Dual-Factor Weighted SVDD for Multimode Batch Processes  20th
Abnormal Data Detection Based on Dual-Factor Weighted SVDD f...
收藏 引用
20th Chinese Intelligent Systems Conference
作者: Zhou, Xinjie Wang, Jianlin Wei, Qingxuan Li, Ji Sui, Enguang Xin, Wei Beijing Univ Chem Technol Beijing 100029 Peoples R China Beijing Inst Petrochem Technol Beijing 102617 Peoples R China
Current methods for detecting abnormal data in batch processes using Support Vector data Description (SVDD) overlook the varying importance of different training samples to the hypersphere. This always results in mode... 详细信息
来源: 评论
Towards trusted node selection using blockchain for crowdsourced abnormal data detection
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2022年 133卷 320-330页
作者: He, Xin Yang, Haochen Wang, Guanghui Yu, Junyang Henan Univ Sch Software Kaifeng Peoples R China Henan Univ Henan Prov Engn Res Ctr Intelligent Data Proc Kaifeng Peoples R China Henan Univ Henan Int Joint Lab Intelligent Network Theory & Kaifeng Peoples R China
Node selection plays an important role to design and implement the crowdsourced abnormal data detection system with the purpose of completing complex tasks to meet the requirements of computing performance. Even thoug... 详细信息
来源: 评论
abnormal data detection and Identification Method of Distribution Internet of Things Monitoring Terminal Based on Spatiotemporal Correlation
收藏 引用
ENERGIES 2022年 第6期15卷 2151页
作者: Shao, Nan Chen, Yu Shandong Univ Technol Sch Elect & Elect Engn Zibo 255000 Peoples R China
As an important part of the ubiquitous power Internet of Things, the distribution Internet of Things can further improve the automation and informatization level of the distribution network. The reliability of the mea... 详细信息
来源: 评论
abnormal data detection for structural health monitoring: State-of-the-art review
收藏 引用
DEVELOPMENTS IN THE BUILT ENVIRONMENT 2024年 17卷
作者: Deng, Yang Zhao, Yingjie Ju, Hanwen Yi, Ting-Hua Li, Aiqun Beijing Univ Civil Engn & Architecture Sch Civil Engn & Transportat Engn Beijing 100044 Peoples R China Minist Educ Int Joint Lab Safety & Energy Conservat Ancient Bl Beijing Peoples R China Dalian Univ Technol Sch Civil Engn Dalian Peoples R China
Structural health monitoring (SHM) is widely used to monitor and assess the condition and performance of engineering structures such as, buildings, bridges, dams, and tunnels. Owing to sensor defects, data acquisition... 详细信息
来源: 评论
A Deep Learning-Based Method for Automatic abnormal data detection: Case Study for Bridge Structural Health Monitoring
收藏 引用
INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS 2023年 第11期23卷
作者: Ye, Xijun Wu, Peirong Liu, Airong Zhan, Xiaoyu Wang, Zeyu Zhao, Yinghao Guangzhou Univ Sch Civil Engn Guangzhou 510006 Peoples R China Guangzhou Univ Res Ctr Wind Engn & Engn Vibrat Guangzhou 510006 Peoples R China Shenzhen Transportat Design & Res Inst Co Ltd Shenzhen Peoples R China Tsinghua Univ Dept Civil Engn Beijing Peoples R China Guangzhou Inst Bldg Sci Grp Co Ltd Guangzhou 510440 Peoples R China South China Univ Technol Sch Civil Engn & Transportat Guangzhou 510641 Peoples R China Guangzhou Construction Engn Co Ltd Guangzhou 510030 Peoples R China
Ideally, the monitoring data collected by the Structural health monitoring (SHM) system should purely reflect the structure status. However, sensors deployed in the field can be very vulnerable to extreme conditions s... 详细信息
来源: 评论
Application of Change-Point Analysis to abnormal Wind Power data detection
Application of Change-Point Analysis to Abnormal Wind Power ...
收藏 引用
IEEE PES General Meeting
作者: Xu, Man Lu, Zongxiang Qiao, Ying Wang, Ningbo Zhou, Shiyuan Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China
The abnormal data of wind power could be caused by many on-site situations, such as meteorological conditions, control strategies and communication environments, which must be detected before put into work. This paper... 详细信息
来源: 评论
Design of Online Monitoring Method for Distribution IoT Devices Based on DBSCAN Optimization Algorithm
Informatica (Slovenia)
收藏 引用
Informatica (Slovenia) 2025年 第5期49卷 181-194页
作者: Hou, Chaofan Xu, Nan Liu, Siyu State Grid Beijing Electric Power Company Information and Communication Branch Beijing China
In response to the data mutation problem caused by equipment failures in the distribution Internet of Things, this study proposes a density-based clustering optimization algorithm for online monitoring of equipment da... 详细信息
来源: 评论
Prediction Performance Improvement via Anomaly detection and Correction of Actual Production data in Iron Ore Sintering Process
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2020年 第12期16卷 7602-7612页
作者: Hu, Jie Wu, Min Zhang, Pan Pedrycz, Witold China Univ Geosci Sch Automat Wuhan 430074 Peoples R China Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Peoples R China Univ Alberta Dept Elect & Comp Engn Edmonton AB T6R 2V4 Canada King Abdulaziz Univ Dept Elect & Comp Engn Fac Engn Jeddah 21589 Saudi Arabia Polish Acad Sci Syst Res Inst PL-01447 Warsaw Poland
The accuracy and integrity of the actual production data influence the reliability and stability of sintering process in steel industry. However, the actual production data may encounter various outliers due to noise,... 详细信息
来源: 评论