咨询与建议

限定检索结果

文献类型

  • 28 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 32 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 21 篇 理学
    • 20 篇 数学
    • 2 篇 物理学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 18 篇 工学
    • 7 篇 电气工程
    • 6 篇 计算机科学与技术...
    • 6 篇 软件工程
    • 5 篇 控制科学与工程
    • 2 篇 光学工程
    • 2 篇 信息与通信工程
    • 1 篇 土木工程
    • 1 篇 交通运输工程
  • 13 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 2 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 32 篇 accelerated grad...
  • 4 篇 convex optimizat...
  • 3 篇 distributed opti...
  • 2 篇 random sleep
  • 2 篇 structured conve...
  • 2 篇 fista
  • 2 篇 convex programmi...
  • 2 篇 nesterov method
  • 2 篇 vanishing dampin...
  • 2 篇 inertial forward...
  • 2 篇 composite optimi...
  • 2 篇 convergence rate
  • 2 篇 alternating dire...
  • 2 篇 multi-agent syst...
  • 2 篇 separable struct...
  • 2 篇 global convergen...
  • 2 篇 proximal-based m...
  • 2 篇 complexity
  • 1 篇 structural optim...
  • 1 篇 extrapolation

机构

  • 3 篇 louisiana state ...
  • 2 篇 univ tokyo math ...
  • 2 篇 univ florida dep...
  • 2 篇 univ florida dep...
  • 1 篇 natl res univ hi...
  • 1 篇 zhongguancun lab...
  • 1 篇 southeast univ s...
  • 1 篇 univ washington ...
  • 1 篇 georgia state un...
  • 1 篇 inst informat tr...
  • 1 篇 air force res la...
  • 1 篇 humboldt univ in...
  • 1 篇 univ bourgogne f...
  • 1 篇 key lab of syste...
  • 1 篇 nanjing univ pos...
  • 1 篇 anhui normal uni...
  • 1 篇 weierstrass inst...
  • 1 篇 moscow inst phys...
  • 1 篇 guangzhou univ s...
  • 1 篇 tohoku univ grad...

作者

  • 3 篇 zhang hongchao
  • 3 篇 li bin
  • 2 篇 nishioka akatsuk...
  • 2 篇 attouch hedy
  • 2 篇 dam hai huyen
  • 2 篇 lan guanghui
  • 2 篇 gasnikov alexand...
  • 2 篇 bai jianchao
  • 2 篇 dvurechensky pav...
  • 2 篇 cantoni antonio
  • 2 篇 hager william w.
  • 2 篇 chen yunmei
  • 2 篇 kanno yoshihiro
  • 1 篇 roy scott
  • 1 篇 ocampo-martinez ...
  • 1 篇 chbani zaki
  • 1 篇 tan shaolin
  • 1 篇 ivanova anastasi...
  • 1 篇 teo kok lay
  • 1 篇 saber maraoui

语言

  • 32 篇 英文
检索条件"主题词=Accelerated gradient method"
32 条 记 录,以下是1-10 订阅
排序:
A First-Order Optimal Zero-Forcing Beamformer Design for Multiuser MIMO Systems via a Regularized Dual accelerated gradient method
收藏 引用
IEEE COMMUNICATIONS LETTERS 2015年 第2期19卷 195-198页
作者: Li, Bin Dam, Hai Huyen Cantoni, Antonio Teo, Kok Lay Curtin Univ Dept Math & Stat Perth WA 6845 Australia Univ Western Australia Sch Elect Elect & Comp Engn Crawley WA 6009 Australia
A first-order zero-forcing beamformer design is proposed in this letter for MU-MIMO systems under per-antenna power constraints (PAPC). By forming the regularized dual problem, first-order methods can be applied. To a... 详细信息
来源: 评论
A timestamp-based Nesterov's accelerated projected gradient method for distributed Nash equilibrium seeking in monotone games
收藏 引用
SYSTEMS & CONTROL LETTERS 2024年 194卷
作者: Liu, Nian Tan, Shaolin Tao, Ye Lu, Jinhu Zhongguancun Lab Beijing 100094 Peoples R China Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China
In this paper, a timestamp-based Nesterov's accelerated gradient algorithm is proposed for Nash equilibrium seeking over communication networks for strongly monotone games. Its difference from the well-known conse... 详细信息
来源: 评论
A feasible smoothing accelerated projected gradient method for nonsmooth convex optimization
收藏 引用
OPERATIONS RESEARCH LETTERS 2024年 57卷
作者: Nishioka, Akatsuki Kanno, Yoshihiro Univ Tokyo Dept Math Informat Bunkyo Ku Hongo 7-3-1Bunkyo Ku Tokyo 1138656 Japan Univ Tokyo Math & Informat Ctr Hongo 7-3-1Bunkyo Ku Tokyo 1138656 Japan
Smoothing accelerated gradient methods achieve faster convergence rates than that of the subgradient method for some nonsmooth convex optimization problems. However, Nesterov's extrapolation may require gradients ... 详细信息
来源: 评论
An inexact ADMM for separable nonconvex and nonsmooth optimization
收藏 引用
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS 2025年 第2期90卷 445-479页
作者: Bai, Jianchao Zhang, Miao Zhang, Hongchao Northwestern Polytech Univ Shenzhen Res & Dev Inst Shenzhen 518057 Peoples R China Northwestern Polytech Univ Sch Math & Stat Xian 710072 Peoples R China Louisiana State Univ Dept Math Baton Rouge LA 70803 USA
An inexact alternating direction method of multiplies (I-ADMM) with an expansion linesearch step was developed for solving a family of separable minimization problems subject to linear constraints, where the objective... 详细信息
来源: 评论
Inertial projected gradient method for large-scale topology optimization
收藏 引用
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS 2023年 第2期40卷 877-905页
作者: Nishioka, Akatsuki Kanno, Yoshihiro Univ Tokyo Grad Sch Informat Sci & Technol Dept Math Informat Hongo 7-3-1Bunkyo ku Tokyo 1138656 Japan Univ Tokyo Math & Informat Ctr Hongo 7-3-1Bunkyo ku Tokyo 1138656 Japan
We present an inertial projected gradient method for solving large-scale topology optimization problems. We consider the compliance minimization problem, the heat conduction problem and the compliant mechanism problem... 详细信息
来源: 评论
accelerated gradient methods with absolute and relative noise in the gradient
收藏 引用
OPTIMIZATION methodS & SOFTWARE 2023年 第6期38卷 1180-1229页
作者: Vasin, Artem Gasnikov, Alexander Dvurechensky, Pavel Spokoiny, Vladimir Moscow Inst Phys & Technol Res Ctr Appl AI Syst Dolgoprudnyi Russia Moscow Inst Phys & Technol Lab Math Methods Optimizat Dolgoprudnyi Russia Inst Informat Transmiss Problems Sect 7 Moscow Russia Weierstrass Inst Appl Anal & Stochast Res Grp Stochast Algorithms & Nonparametr Stat Berlin Germany Humboldt Univ Inst Math Berlin Germany Weierstrass Inst Appl Anal & Stochast Res Grp Stochast Algorithms & Nonparametr Stat D-10117 Berlin Germany
In this paper, we investigate accelerated first-order methods for smooth convex optimization problems under inexact information on the gradient of the objective. The noise in the gradient is considered to be additive ... 详细信息
来源: 评论
Almost Sure Convergence of Proximal Stochastic accelerated gradient methods
收藏 引用
Journal of Applied Mathematics and Physics 2024年 第4期12卷 1321-1336页
作者: Xin Xiang Haoming Xia Key Laboratory of Optimization Theory and Applications School of Mathematics and Information China West Normal University Nanchong China
Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stocha... 详细信息
来源: 评论
Scalable Distributed Optimization Combining Conic Projection and Linear Programming for Energy Community Scheduling
收藏 引用
Journal of Modern Power Systems and Clean Energy 2023年 第6期11卷 1814-1826页
作者: Mohammad Dolatabadi Alberto Borghetti Pierluigi Siano Department of Mathematics Vali-e-Asr University of RafsanjanRafsanjan 77188-97111Iran Department of Electrical Electronicand Information EngineeringUniversity of BolognaBolognaItaly Department of Management&Innovation Systems University of SalernoSalernoItaly Department of Electrical and Electronic Engineering Science University of JohannesburgJohannesburg 2006South Africa
In this paper, a new method to address the scheduling problem of a renewable energy community while considering network constraints and users' privacy preservation is proposed. The method decouples the optimizatio... 详细信息
来源: 评论
LINEAR CONVERGENCE OF PROXIMAL gradient ALGORITHM WITH EXTRAPOLATION FOR A CLASS OF NONCONVEX NONSMOOTH MINIMIZATION PROBLEMS
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2017年 第1期27卷 124-145页
作者: Wen, Bo Chen, Xiaojun Pong, Ting Kei Harbin Inst Technol Dept Math Harbin Peoples R China Hong Kong Polytech Univ Dept Appl Math Hong Kong Hong Kong Peoples R China
In this paper, we study the proximal gradient algorithm with extrapolation for minimizing the sum of a Lipschitz differentiable function and a proper closed convex function. Under the error bound condition used in [An... 详细信息
来源: 评论
accelerated Distributed Hybrid Stochastic/Robust Energy Management of Smart Grids
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2021年 第8期17卷 5335-5347页
作者: Chang, Xinyue Xu, Yinliang Gu, Wei Sun, Hongbin Chow, Mo-Yuen Yi, Zhongkai Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Tsinghua Berkeley Shenzhen Inst Beijing 100084 Peoples R China Southeast Univ Sch Elect Engn Nanjing 210096 Peoples R China Tsinghua Univ Dept Elect Engn State Key Lab Power Syst Beijing 100084 Peoples R China North Carolina State Univ Dept Elect & Comp Engn Raleigh NC 27695 USA
The uncertainties of renewable energy, loads, and electricity prices pose significant challenges to the economical and secure energy management of smart grids. In this article, a hybrid stochastic/robust (HSR) optimiz... 详细信息
来源: 评论