咨询与建议

限定检索结果

文献类型

  • 52 篇 期刊文献
  • 24 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 72 篇 工学
    • 41 篇 计算机科学与技术...
    • 30 篇 电气工程
    • 22 篇 控制科学与工程
    • 18 篇 信息与通信工程
    • 6 篇 交通运输工程
    • 5 篇 软件工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 2 篇 测绘科学与技术
    • 1 篇 化学工程与技术
  • 18 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 数学
    • 6 篇 系统科学
    • 1 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 1 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 77 篇 actor-critic alg...
  • 31 篇 reinforcement le...
  • 17 篇 deep reinforceme...
  • 5 篇 deep learning
  • 5 篇 reinforcement le...
  • 4 篇 input constraint...
  • 3 篇 dynamic path pla...
  • 3 篇 task analysis
  • 3 篇 transfer learnin...
  • 3 篇 differential gam...
  • 3 篇 reinforcement le...
  • 3 篇 trajectory
  • 3 篇 active hypothesi...
  • 3 篇 sequential sensi...
  • 3 篇 multi-agent rein...
  • 2 篇 vehicle dynamics
  • 2 篇 quickest state e...
  • 2 篇 sample efficienc...
  • 2 篇 nonzero-sum stoc...
  • 2 篇 industry 4.0

机构

  • 4 篇 syracuse univ de...
  • 4 篇 indian inst sci ...
  • 3 篇 menoufia univ fa...
  • 3 篇 school of contro...
  • 2 篇 lebanese amer un...
  • 2 篇 concordia univ m...
  • 2 篇 harokopio univ a...
  • 2 篇 huazhong univ sc...
  • 2 篇 lakehead univ th...
  • 2 篇 nile univ sesc r...
  • 2 篇 jilin univ key l...
  • 2 篇 univ elect sci &...
  • 2 篇 shenzhen univ co...
  • 2 篇 texas a&m univ d...
  • 2 篇 jilin univ coll ...
  • 1 篇 univ calif berke...
  • 1 篇 zhongguancun lab...
  • 1 篇 univ texas austi...
  • 1 篇 hanoi univ sci &...
  • 1 篇 texas a&m univ c...

作者

  • 3 篇 joseph geethu
  • 3 篇 chronis christos
  • 3 篇 shalaby raafat
  • 3 篇 bhatnagar shalab...
  • 3 篇 varlamis iraklis
  • 3 篇 varshney pramod ...
  • 3 篇 politi elena
  • 3 篇 gursoy m. cenk
  • 3 篇 mahmoud tarek a.
  • 3 篇 abo-zalam belal
  • 3 篇 dimitrakopoulos ...
  • 3 篇 el-hossainy moha...
  • 2 篇 wang bing-chang
  • 2 篇 assi chadi
  • 2 篇 wang yanzhi
  • 2 篇 zhang zhicai
  • 2 篇 lu shuai
  • 2 篇 qiu qinru
  • 2 篇 qu hong
  • 2 篇 parizs richard d...

语言

  • 77 篇 英文
检索条件"主题词=Actor-Critic algorithm"
77 条 记 录,以下是51-60 订阅
排序:
A Scalable algorithm for Anomaly Detection via Learning-Based Controlled Sensing
A Scalable Algorithm for Anomaly Detection via Learning-Base...
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Joseph, Geethu Gursoy, M. Cenk Varshney, Pramod K. Syracuse Univ Dept Elect Engn & Comp Sci Syracuse NY 13244 USA
We address the problem of sequentially selecting and observing processes from a given set to find the anomalies among them. The decision maker observes one process at a time and obtains a noisy binary indicator of whe... 详细信息
来源: 评论
Deep Reinforcement Learning with Iterative Shift for Visual Tracking  15th
Deep Reinforcement Learning with Iterative Shift for Visual ...
收藏 引用
15th European Conference on Computer Vision (ECCV)
作者: Ren, Liangliang Yuan, Xin Lu, Jiwen Yang, Ming Zhou, Jie Tsinghua Univ Beijing Peoples R China Horizon Robot Inc Beijing Peoples R China
Visual tracking is confronted by the dilemma to locate a target both accurately and efficiently, and make decisions online whether and how to adapt the appearance model or even restart tracking. In this paper, we prop... 详细信息
来源: 评论
Policy Space Noise in Deep Deterministic Policy Gradient  25th
Policy Space Noise in Deep Deterministic Policy Gradient
收藏 引用
25th International Conference on Neural Information Processing (ICONIP)
作者: Yan, Yan Liu, Quan Soochow Univ Sch Comp Sci & Technol Suzhou 215006 Jiangsu Peoples R China Collaborat Innovat Ctr Novel Software Technol & I Nanjing 210000 Peoples R China Jilin Univ Minist Educ Key Lab Symbol Computat & Knowledge Engn Changchun 130012 Peoples R China
Deep deterministic policy gradient (DDPG) algorithm is an attractive reinforcement learning method, which directly optimizes the policy and has good performance in many continuous control tasks. In DDPG, the agent exp... 详细信息
来源: 评论
Learning-Based Task Offloading for Mobile Edge Computing
Learning-Based Task Offloading for Mobile Edge Computing
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Garaali, Rim Chaieb, Cirine Ajib, Wessam Afif, Meriem Univ Quebec Montreal Dept Comp Sci Montreal PQ Canada Univ Carthage Natl Inst Appl Sci & Technol Tunis Tunisia
Mobile edge computing (MEC) is an important technology for latency-sensitive applications. One of the biggest challenges in MEC is efficiently allocating resources under strict QoS requirements and resource constraint... 详细信息
来源: 评论
Search Parameter Optimization of Phased Array Radar with Multi-antenna Array Based on Proximal Policy Optimization  36
Search Parameter Optimization of Phased Array Radar with Mul...
收藏 引用
36th Chinese Control and Decision Conference (CCDC)
作者: Mo, Xiuci Wang, Teng Hu, Weidong Zhang, Hairuo Li, Xiaoyang Zhou, Deyun Natl Univ Def Technol Natl Key Lab Automat Target Recognit Changsha Peoples R China Northwestern Polytech Univ Sch Elect & Informat Xian Peoples R China
An optimization algorithm of multi-antenna array radar search parameters based on proximal policy optimization is proposed to solve the problem that the parameters of traditional single-antenna array radar optimizatio... 详细信息
来源: 评论
Resilient Multi-agent Reinforcement Learning Using Medoid and Soft-medoid Based Aggregation
Resilient Multi-agent Reinforcement Learning Using Medoid an...
收藏 引用
IEEE International Conference on Assured Autonomy (ICAA)
作者: Bhowmick, Chandreyee Shabbir, Mudassir Abbas, Waseem Koutsoukos, Xenofon Vanderbilt Univ Inst Software Integrated Syst 221 Kirkland Hall Nashville TN 37235 USA Univ Texas Dallas Dept Syst Engn Richardson TX USA
A network of reinforcement learning (RL) agents that cooperate with each other by sharing information can improve learning performance of control and coordination tasks when compared to non-cooperative agents. However... 详细信息
来源: 评论
An online Q-learning design for stochastic differential LQ game with completely unknown dynamics  41
An online Q-learning design for stochastic differential LQ g...
收藏 引用
第41届中国控制会议
作者: Baoqiang Zhang Bingchang Wang School of Control Science and Engineering Shandong University Shandong University
In this paper,we design a reinforcement learning algorithm to solve the adaptive optimal control problem of linear quadratic stochastic non-zero sum differential game with n-players and completely unknown *** is diffi... 详细信息
来源: 评论
Estimating reaction barriers with deep reinforcement learning
收藏 引用
Data Science 2024年 第2期7卷 73-92页
作者: Pal, Adittya Institut for Matematik Og Datalogi Syddansk Universitet Campusvej 55 Odense 5230 Denmark
Stable states in complex systems correspond to local minima on the associated potential energy surface. Transitions between these local minima govern the dynamics of such systems. Precisely determining the transition ... 详细信息
来源: 评论
A Research on Generative Adversarial Networks Applied to Text Generation  14
A Research on Generative Adversarial Networks Applied to Tex...
收藏 引用
14th International Conference on Computer Science and Education (ICCSE)
作者: Zhang, Chao Xiong, Caiquan Wang, Lingyun Hubei Univ Technol Sch Comp Sci Wuhan Peoples R China
Using deep learning methods to generate text, a sequence-to-sequence model is typically used. This kind of models is very effective in dealing with tasks that have a strong correspondence between input and output, suc... 详细信息
来源: 评论
Autonomous UAV with Learned Trajectory Generation and Control  33
Autonomous UAV with Learned Trajectory Generation and Contro...
收藏 引用
33rd IEEE International Workshop on Signal Processing Systems (IEEE SiPS)
作者: Li, Yilan Li, Mingyang Sanyal, Amit Wang, Yanzhi Qiu, Qinru Syracuse Univ Dept Elect Engn & Comp Sci Syracuse NY 13244 USA Northeastern Univ Dept Elect & Comp Engn Boston MA 02115 USA
Unmanned aerial vehicle (UAV) technology is a rapidly growing field with tremendous opportunities for research and applications. To achieve true autonomy for UAVs in the absence of remote control, external navigation ... 详细信息
来源: 评论