咨询与建议

限定检索结果

文献类型

  • 52 篇 期刊文献
  • 24 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 72 篇 工学
    • 41 篇 计算机科学与技术...
    • 30 篇 电气工程
    • 22 篇 控制科学与工程
    • 18 篇 信息与通信工程
    • 6 篇 交通运输工程
    • 5 篇 软件工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 2 篇 测绘科学与技术
    • 1 篇 化学工程与技术
  • 18 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 数学
    • 6 篇 系统科学
    • 1 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 1 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 77 篇 actor-critic alg...
  • 31 篇 reinforcement le...
  • 17 篇 deep reinforceme...
  • 5 篇 deep learning
  • 5 篇 reinforcement le...
  • 4 篇 input constraint...
  • 3 篇 dynamic path pla...
  • 3 篇 task analysis
  • 3 篇 transfer learnin...
  • 3 篇 differential gam...
  • 3 篇 reinforcement le...
  • 3 篇 trajectory
  • 3 篇 active hypothesi...
  • 3 篇 sequential sensi...
  • 3 篇 multi-agent rein...
  • 2 篇 vehicle dynamics
  • 2 篇 quickest state e...
  • 2 篇 sample efficienc...
  • 2 篇 nonzero-sum stoc...
  • 2 篇 industry 4.0

机构

  • 4 篇 syracuse univ de...
  • 4 篇 indian inst sci ...
  • 3 篇 menoufia univ fa...
  • 3 篇 school of contro...
  • 2 篇 lebanese amer un...
  • 2 篇 concordia univ m...
  • 2 篇 harokopio univ a...
  • 2 篇 huazhong univ sc...
  • 2 篇 lakehead univ th...
  • 2 篇 nile univ sesc r...
  • 2 篇 jilin univ key l...
  • 2 篇 univ elect sci &...
  • 2 篇 shenzhen univ co...
  • 2 篇 texas a&m univ d...
  • 2 篇 jilin univ coll ...
  • 1 篇 univ calif berke...
  • 1 篇 zhongguancun lab...
  • 1 篇 univ texas austi...
  • 1 篇 hanoi univ sci &...
  • 1 篇 texas a&m univ c...

作者

  • 3 篇 joseph geethu
  • 3 篇 chronis christos
  • 3 篇 shalaby raafat
  • 3 篇 bhatnagar shalab...
  • 3 篇 varlamis iraklis
  • 3 篇 varshney pramod ...
  • 3 篇 politi elena
  • 3 篇 gursoy m. cenk
  • 3 篇 mahmoud tarek a.
  • 3 篇 abo-zalam belal
  • 3 篇 dimitrakopoulos ...
  • 3 篇 el-hossainy moha...
  • 2 篇 wang bing-chang
  • 2 篇 assi chadi
  • 2 篇 wang yanzhi
  • 2 篇 zhang zhicai
  • 2 篇 lu shuai
  • 2 篇 qiu qinru
  • 2 篇 qu hong
  • 2 篇 parizs richard d...

语言

  • 77 篇 英文
检索条件"主题词=Actor-critic Algorithm"
77 条 记 录,以下是61-70 订阅
排序:
Reinforcement Learning Based Dynamic Resource Allocation for Massive MTC in Sliced Mobile Networks  14
Reinforcement Learning Based Dynamic Resource Allocation for...
收藏 引用
14th IEEE International Conference on Advanced Infocomm Technology (ICAIT)
作者: Yang, Bei Xu, Yiqian She, Xiaoming Zhu, Jianchi Wei, Fengsheng Cheri, Peng Wang, Jianxiu China Telecom Res Inst Beijing 102209 Peoples R China Univ Elect Sci & Technol China Chengdu 611731 Peoples R China
With the rapid development of the Internet of Things (IoT) systems, the low latency requirement of massive Machine Type Communication ( mMTC) in the IoT is an urgent problem to be solved for future mobile communicatio... 详细信息
来源: 评论
Fast and Accurate Trajectory Tracking for Unmanned Aerial Vehicles based on Deep Reinforcement Learning  25
Fast and Accurate Trajectory Tracking for Unmanned Aerial Ve...
收藏 引用
25th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)
作者: Li, Yilan Li, Hongjia Li, Zhe Fang, Haowen Sanyal, Amit K. Wang, Yanzhi Qiu, Qinru Syracuse Univ Elect Engn & Comp Sci Syracuse NY 13244 USA Syracuse Univ Mech & Aerosp Engn Syracuse NY 13244 USA Northeastern Univ Elect & Comp Engn Boston MA 02115 USA
Continuous trajectory control of fixed-wing unmanned aerial vehicles (UAVs) is complicated when considering hidden dynamics. Due to UAV multi degrees of freedom, tracking methodologies based on conventional control th... 详细信息
来源: 评论
A Neuro-fuzzy Learning System for Adaptive Swarm Behaviors Dealing with Continuous State Space
收藏 引用
4th International Conference on Intelligent Computing
作者: Kuremoto, Takashi Obayashi, Masanao Kobayashi, Kunikazu Adachi, Hirotaka Yoneda, Kentaro Yamaguchi Univ Grad Sch Sci & Engn Tokiwadai 2-16-1 Yamaguchi 7558611 Japan Fac Sci & Engn Yamaguchi Japan
Swarm intelligence has brought a new paradise for function optimization, structural optimization, multi-agent systems and other study fields. In our previous work, we proposed a neuro-fuzzy system using reinforcement ... 详细信息
来源: 评论
Optimal Transportation Network Company Vehicle Dispatching via Deep Deterministic Policy Gradient  14th
Optimal Transportation Network Company Vehicle Dispatching v...
收藏 引用
14th International Conference on Wireless algorithms, Systems, and Applications (WASA)
作者: Shi, Dian Li, Xuanheng Li, Ming Wang, Jie Li, Pan Pan, Miao Univ Houston Houston TX 77204 USA Dalian Univ Technol Dalian Peoples R China Univ Texas Arlington Arlington TX 76019 USA Case Western Reserve Univ Cleveland OH 44106 USA
With the popularity of smart phones and the maturity of civilian global positioning system (GPS) technology, transportation network company (TNC) services have become a prominent commute mode in many major cities, whi... 详细信息
来源: 评论
Content-centric Caching Using Deep Reinforcement Learning in Mobile Computing
Content-centric Caching Using Deep Reinforcement Learning in...
收藏 引用
International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS)
作者: Wang, Cairong Gai, Keke Guo, Jinnan Zhu, Liehuang Zhang, Zijian Beijing Inst Technol Sch Comp Sci & Technol Beijing Peoples R China Beijing Inst Technol AffBSch Informat & Elect Beijing Peoples R China Univ Auckland Dept Comp Sci Auckland New Zealand
In era of Internet, the amount of the connected devices has been remarkably increasing along with the increment of the network-based service. Both service quality and user's experience are facing great impact from... 详细信息
来源: 评论
A Deep Reinforcement Learning Approach for Navigation and Control of Autonomous Underwater Vehicles in Complex Environments  18
A Deep Reinforcement Learning Approach for Navigation and Co...
收藏 引用
18th International Conference on Control Automation Robotics and Vision
作者: Stefanidou, Artemis Politi, Elena Chronis, Christos Dimitrakopoulos, George Varlamis, Iraklis Harokopio Univ Dept Informat & Telemat Athens Greece
The comprehension of the underwater environment is recently being accelerated by technological advances in sensors, robotics and Artificial Intelligence (AI). At the forefront of this evolution, lies the Autonomous Un... 详细信息
来源: 评论
Transfer Reinforcement Learning Framework for Energy Saving in Next Generation Wireless Networks
Transfer Reinforcement Learning Framework for Energy Saving ...
收藏 引用
作者: Shreyata Sharma Indraprastha Institute of Information Technology Delhi
学位级别:硕士
Recent upsurge in data intensive applications over wireless communication networks is stimu- lating rapid expansion of such networks and thus presenting new research challenges pertaining to their efficient deployment... 详细信息
来源: 评论
Dispatch of autonomous vehicles for taxi services: A deep reinforcement learning approach
收藏 引用
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES 2020年 115卷 102626-102626页
作者: Mao, Chao Liu, Yulin Shen, Zuo-Jun (max) Univ Calif Berkeley Dept Civil & Environm Engn Berkeley CA 94720 USA Univ Calif Berkeley Dept Ind Engn & Operat Res Berkeley CA 94720 USA Tsinghua Univ Tsinghua Berkeley Shenzhen Inst TBSI Shenzhen 518055 Peoples R China
In this paper, we define and investigate a novel model-free deep reinforcement learning framework to solve the taxi dispatch problem. The framework can be used to redistribute vehicles when the travel demand and taxi ... 详细信息
来源: 评论
TASAC: A twin-actor reinforcement learning framework with a stochastic with an to batch control
收藏 引用
CONTROL ENGINEERING PRACTICE 2023年 第1期134卷
作者: Joshi, Tanuja Kodamana, Hariprasad Kandath, Harikumar Kaisare, Niket Indian Inst Technol Delhi Dept Chem Engn New Delhi 110016 India Indian Inst Technol Delhi Yardi Sch Artificial Intelligence New Delhi 110016 India Int Inst Informat Technol Hyderabad Hyderabad 500032 India Indian Inst Technol Madras Dept Chem Engn Chennai 600036 India
Due to their complex nonlinear dynamics and batch-to-batch variability, batch processes pose a challenge for process control. Due to the absence of accurate models and resulting plant-model mismatch, these problems be... 详细信息
来源: 评论
Multi-agent reinforcement learning for multi-area power exchange
收藏 引用
ELECTRIC POWER SYSTEMS RESEARCH 2024年 235卷
作者: Xi, Jiachen Garcia, Alfredo Chen, Yu Christine Khatami, Roohallah Texas A&M Univ Dept Ind & Syst Engn College Stn TX 77840 USA Univ British Columbia Dept Elect & Comp Engn Vancouver BC Canada Southern Illinois Univ Sch Elect Comp & Biomed Engn Carbondale IL USA
Increasing renewable integration leads to faster and more frequent fluctuations in the power system net-load (load minus non-dispatchable renewable generation) along with greater uncertainty in its forecast. These can... 详细信息
来源: 评论