咨询与建议

限定检索结果

文献类型

  • 52 篇 期刊文献
  • 24 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 72 篇 工学
    • 41 篇 计算机科学与技术...
    • 30 篇 电气工程
    • 22 篇 控制科学与工程
    • 18 篇 信息与通信工程
    • 6 篇 交通运输工程
    • 5 篇 软件工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 2 篇 测绘科学与技术
    • 1 篇 化学工程与技术
  • 18 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 12 篇 理学
    • 10 篇 数学
    • 6 篇 系统科学
    • 1 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 1 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 77 篇 actor-critic alg...
  • 31 篇 reinforcement le...
  • 17 篇 deep reinforceme...
  • 5 篇 deep learning
  • 5 篇 reinforcement le...
  • 4 篇 input constraint...
  • 3 篇 dynamic path pla...
  • 3 篇 task analysis
  • 3 篇 transfer learnin...
  • 3 篇 differential gam...
  • 3 篇 reinforcement le...
  • 3 篇 trajectory
  • 3 篇 active hypothesi...
  • 3 篇 sequential sensi...
  • 3 篇 multi-agent rein...
  • 2 篇 vehicle dynamics
  • 2 篇 quickest state e...
  • 2 篇 sample efficienc...
  • 2 篇 nonzero-sum stoc...
  • 2 篇 industry 4.0

机构

  • 4 篇 syracuse univ de...
  • 4 篇 indian inst sci ...
  • 3 篇 menoufia univ fa...
  • 3 篇 school of contro...
  • 2 篇 lebanese amer un...
  • 2 篇 concordia univ m...
  • 2 篇 harokopio univ a...
  • 2 篇 huazhong univ sc...
  • 2 篇 lakehead univ th...
  • 2 篇 nile univ sesc r...
  • 2 篇 jilin univ key l...
  • 2 篇 univ elect sci &...
  • 2 篇 shenzhen univ co...
  • 2 篇 texas a&m univ d...
  • 2 篇 jilin univ coll ...
  • 1 篇 univ calif berke...
  • 1 篇 zhongguancun lab...
  • 1 篇 univ texas austi...
  • 1 篇 hanoi univ sci &...
  • 1 篇 texas a&m univ c...

作者

  • 3 篇 joseph geethu
  • 3 篇 chronis christos
  • 3 篇 shalaby raafat
  • 3 篇 bhatnagar shalab...
  • 3 篇 varlamis iraklis
  • 3 篇 varshney pramod ...
  • 3 篇 politi elena
  • 3 篇 gursoy m. cenk
  • 3 篇 mahmoud tarek a.
  • 3 篇 abo-zalam belal
  • 3 篇 dimitrakopoulos ...
  • 3 篇 el-hossainy moha...
  • 2 篇 wang bing-chang
  • 2 篇 assi chadi
  • 2 篇 wang yanzhi
  • 2 篇 zhang zhicai
  • 2 篇 lu shuai
  • 2 篇 qiu qinru
  • 2 篇 qu hong
  • 2 篇 parizs richard d...

语言

  • 77 篇 英文
检索条件"主题词=Actor-critic algorithm"
77 条 记 录,以下是71-80 订阅
排序:
Deep Reinforcement Learning for Semisupervised Hyperspectral Band Selection
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2022年 60卷 1页
作者: Feng, Jie Li, Di Gu, Jing Cao, Xianghai Shang, Ronghua Zhang, Xiangrong Jiao, Licheng Xidian Univ Key Lab Intelligent Percept & Image Understanding Minist Educ China Xian 710071 Peoples R China
Band selection is an important step in efficient processing of hyperspectral images (HSIs), which can be seen as the combination of powerful band search technique and effective evaluation criterion. The existing deep-... 详细信息
来源: 评论
CVLight: Decentralized learning for adaptive traffic signal control with connected vehicles
收藏 引用
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES 2022年 141卷
作者: Mo, Zhaobin Li, Wangzhi Fu, Yongjie Ruan, Kangrui Di, Xuan Columbia Univ Data Sci Inst New York NY 10027 USA Columbia Univ Dept Civil Engn & Engn Mech New York NY 10027 USA
This paper develops a decentralized reinforcement learning (RL) scheme for multi-intersection adaptive traffic signal control (TSC), called "CVLight", that leverages data collected from connected vehicles (C... 详细信息
来源: 评论
Multi-agent reinforcement learning-based dynamic task assignment for vehicles in urban transportation system
收藏 引用
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS 2021年 240卷 108251-108251页
作者: Qin, Wei Sun, Yan-Ning Zhuang, Zi-Long Lu, Zhi-Yao Zhou, Yao-Ming Shanghai Jiao Tong Univ Sch Mech Engn Shanghai 200240 Peoples R China
The task assignment for vehicles plays an important role in urban transportation system, which is the key to cost reduction and efficiency improvement. The development of information technology and the emergence of &q... 详细信息
来源: 评论
Sampling diversity driven exploration with state difference guidance
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2022年 203卷
作者: Lu, Jiayi Han, Shuai Lu, Shuai Kang, Meng Zhang, Junwei Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun 130012 Peoples R China Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China Univ Utrecht Dept Informat & Comp Sci Utrecht Netherlands
Exploration is one of the key issues of deep reinforcement learning, especially in the environments with sparse or deceptive rewards. Exploration based on intrinsic rewards can handle these environments. However, thes... 详细信息
来源: 评论
Drone Elevation Control Based on Python-Unity Integrated Framework for Reinforcement Learning Applications
收藏 引用
DRONES 2023年 第4期7卷 225-225页
作者: Abbass, Mahmoud Abdelkader Bashery Kang, Hyun-Soo Chungbuk Natl Univ Sch Elect & Comp Engn Dept Informat & Commun Engn Cheongju 28644 South Korea Helwan Univ Dept Mech Power Engn Cairo 11772 Egypt
Reinforcement learning (RL) applications require a huge effort to become established in real-world environments, due to the injury and break down risks during interactions between the RL agent and the environment, in ... 详细信息
来源: 评论
How to use prior knowledge for injection molding in industry 4.0
收藏 引用
RESULTS IN ENGINEERING 2024年 23卷
作者: Parizs, Richard Dominik Torok, Daniel Budapest Univ Technol & Econ Fac Mech Engn Dept Polymer Engn Muegyetem Rkp 3 H-1111 Budapest Hungary MTA BME Lendulet Lightweight Polymer Composites Re Muegyetem Rkp 3 H-1111 Budapest Hungary
Searching for the optimal injection molding settings for a new product usually requires much time and money. This article proposes a new method that uses reinforcement learning with prior knowledge for the optimizatio... 详细信息
来源: 评论
A Transfer Learning Framework for Energy Efficient Wi-Fi Networks and Performance Analysis Using Real Data
A Transfer Learning Framework for Energy Efficient Wi-Fi Net...
收藏 引用
IEEE International Conference on Advanced Networks and Telecommuncations Systems
作者: Shreyata Sharma S. J. Darak Anand Srivastava Honggang Zhang Department of Electronics and Communication Engineering IIIT Delhi College of Information Science & Electronic Engineering (ISEE) Zhejiang University
In the recent past, there has been an exponential increase in data intensive services over the communication networks. This trend would sustain in future communication networks as well, especially in the Wi-Fi network... 详细信息
来源: 评论