咨询与建议

限定检索结果

文献类型

  • 4 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 3 篇 计算机科学与技术...
    • 2 篇 控制科学与工程
    • 1 篇 仪器科学与技术
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 5 篇 adaptive structu...
  • 4 篇 deep learning
  • 3 篇 rbm
  • 3 篇 dbn
  • 2 篇 deep belief netw...
  • 2 篇 knowledge extrac...
  • 1 篇 segmentation
  • 1 篇 c4.5
  • 1 篇 facial expressio...
  • 1 篇 child model
  • 1 篇 affectnet
  • 1 篇 sdnet2018
  • 1 篇 lung tumor in ns...
  • 1 篇 adversarial data
  • 1 篇 crack detection
  • 1 篇 kullback-leibler...
  • 1 篇 restricted boltz...

机构

  • 2 篇 prefectural univ...
  • 2 篇 prefectural univ...
  • 2 篇 prefectural univ...
  • 1 篇 mitsui consultan...
  • 1 篇 hiroshima city u...
  • 1 篇 prefectural univ...
  • 1 篇 prefectural univ...
  • 1 篇 hiroshima city u...
  • 1 篇 hiroshima city u...
  • 1 篇 prefectural univ...

作者

  • 5 篇 ichimura takumi
  • 5 篇 kamada shin
  • 2 篇 harada toshihide
  • 1 篇 iwasaki takashi

语言

  • 5 篇 英文
检索条件"主题词=Adaptive Structural Learning"
5 条 记 录,以下是1-10 订阅
排序:
adaptive structural learning of Deep Belief Network for Medical Examination Data and Its Knowledge Extraction by using C4.5  1
Adaptive Structural Learning of Deep Belief Network for Medi...
收藏 引用
1st IEEE International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)
作者: Kamada, Shin Ichimura, Takumi Harada, Toshihide Hiroshima City Univ Grad Sch Informat Sci Asaminami Ku 3-4-1 Ozuka Higashi Hiroshima 7313194 Japan Prefectural Univ Hiroshima Fac Management & Informat Syst Minami Ku 1-1-71 Ujina Higashi Hiroshima 7348559 Japan Prefectural Univ Hiroshima Fac Hlth & Welf Minami Ku 1-1-71 Ujina Higashi Hiroshima 7348559 Japan
Deep learning has a hierarchical network architecture to represent the complicated feature of input patterns. The adaptive stnictural learning method of Deep Belief Network (DBN) has been developed. The method can dis... 详细信息
来源: 评论
An adaptive structural learning of Deep Belief Network for Image-based Crack Detection in Concrete Structures Using SDNET2018  1
An Adaptive Structural Learning of Deep Belief Network for I...
收藏 引用
1st International Conference on Image Processing and Robotics (ICIP)
作者: Kamada, Shin Ichimura, Takumi Iwasaki, Takashi Prefectural Univ Hiroshima Res Org Reg Oriented Studies Adv Artificial Intelligence Project Res Ctr Minami Ku 1-1-71 Ujina Higashi Hiroshima 7348558 Japan Prefectural Univ Hiroshima Res Org Reg Oriented Studies Adv Artificial Intelligence Project Res Ctr Fac Management & Informat SystMinami Ku 1-1-71 Ujina Higashi Hiroshima 7348558 Japan Mitsui Consultants Co Ltd MCC Lab Infrastruct Syst Grp Shinagawa Ku Gate City Ohsaki West Tower 15F1-11-1 Osaki Tokyo 1410032 Japan
We have developed an adaptive structural Deep Belief Network (adaptive DBN) that finds an optimal network structure in a self-organizing manner during learning. The adaptive DBN is the hierarchical architecture where ... 详细信息
来源: 评论
Knowledge Extraction of adaptive structural learning of Deep Belief Network for Medical Examination Data
收藏 引用
INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING 2019年 第1期13卷 67-86页
作者: Kamada, Shin Ichimura, Takumi Harada, Toshihide Hiroshima City Univ Grad Sch Informat Sci Asa Minami Ku 3-4-1 Ozuka Higashi Hiroshima 7313194 Japan Prefectural Univ Hiroshima Fac Management & Informat Syst Minami Ku 1-1-71 Ujina Higashi Hiroshima 7348559 Japan Prefectural Univ Hiroshima Fac Hlth & Welf Minami Ku 1-1-71 Ujina Higashi Hiroshima 7348559 Japan
Deep learning has a hierarchical network structure to represent multiple features of input data. The adaptive structural learning method of Deep Belief Network (DBN) can reach the high classification capability while ... 详细信息
来源: 评论
Re-learning of Child Model for Misclassified data by using KL Divergence in AffectNet: A Database for Facial Expression  11
Re-learning of Child Model for Misclassified data by using K...
收藏 引用
IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)
作者: Ichimura, Takumi Kamada, Shin Prefectural Univ Hiroshima Res Org Reg Oriented Studies Adv Artificial Intelligence Project Res Ctr Minami Ku 1-1-71 Ujina Higashi Hiroshima 7348558 Japan Prefectural Univ Hiroshima Fac Management & Informat Syst Minami Ku 1-1-71 Ujina Higashi Hiroshima 7348558 Japan
AffectNet contains more than 1,000,000 facial images which manually annotated for the presence of eight discrete facial expressions and the intensity of valence and arousal. adaptive structural learning method of DBN ... 详细信息
来源: 评论
A Segmentation Method of Lung Tumor by using adaptive structural Deep Belief Network  62
A Segmentation Method of Lung Tumor by using Adaptive Struct...
收藏 引用
62nd Annual Conference of the Society-of-Instrument-and-Control-Engineers (SICE)
作者: Kamada, Shin Ichimura, Takumi Hiroshima City Univ Grad Sch Informat Sci Hiroshima Japan Prefectural Univ Hiroshima Fac Reg Dev Hiroshima Japan
Deep learning has a hierarchical network architecture to represent the complicated feature of input patterns. In the previous research, the adaptive structure learning method of Deep Belief Network (adaptive DBN) was ... 详细信息
来源: 评论