咨询与建议

限定检索结果

文献类型

  • 26 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 38 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 35 篇 工学
    • 25 篇 计算机科学与技术...
    • 14 篇 电气工程
    • 7 篇 控制科学与工程
    • 5 篇 软件工程
    • 4 篇 机械工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 安全科学与工程
  • 6 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 公共管理
  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 化学
  • 2 篇 医学
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 38 篇 adaptive learnin...
  • 4 篇 neural network
  • 3 篇 power engineerin...
  • 3 篇 adaptive control
  • 2 篇 cubature kalman ...
  • 2 篇 neural networks
  • 2 篇 rbf neural netwo...
  • 2 篇 robotic arm cont...
  • 2 篇 hoeffding bound
  • 2 篇 feature extracti...
  • 2 篇 adaptive samplin...
  • 2 篇 sequential sampl...
  • 2 篇 stability
  • 2 篇 learning (artifi...
  • 2 篇 chernoff bound
  • 2 篇 neural network p...
  • 1 篇 image enhancemen...
  • 1 篇 intelligent diag...
  • 1 篇 linear ultrasoni...
  • 1 篇 lumped uncertain...

机构

  • 2 篇 king mongkuts in...
  • 2 篇 tokyo inst techn...
  • 1 篇 anyang inst tech...
  • 1 篇 school of mechan...
  • 1 篇 henan tech inst ...
  • 1 篇 kn toosi univ te...
  • 1 篇 southwest jiaoto...
  • 1 篇 univ qatar dept ...
  • 1 篇 huaiyin inst tec...
  • 1 篇 harbin inst tech...
  • 1 篇 youjiang med uni...
  • 1 篇 univ elect sci &...
  • 1 篇 china univ geosc...
  • 1 篇 guangzhou univ s...
  • 1 篇 des. and prod. e...
  • 1 篇 beijing inst tec...
  • 1 篇 cent s univ sch ...
  • 1 篇 taizhou univ col...
  • 1 篇 i4ai ltd london ...
  • 1 篇 jr polytech coll...

作者

  • 2 篇 ghassabeh younes...
  • 2 篇 sento adna
  • 2 篇 kitjaidure yutta...
  • 2 篇 watanabe o
  • 2 篇 moghaddam hamid ...
  • 1 篇 asif muhammad
  • 1 篇 rahman md zia ur
  • 1 篇 lin chih-min
  • 1 篇 ren yuyao
  • 1 篇 sun yize
  • 1 篇 yuttana kitjaidu...
  • 1 篇 wang xh
  • 1 篇 jiang wei
  • 1 篇 pinspon u
  • 1 篇 pan shouhui
  • 1 篇 fan xianhua
  • 1 篇 liew ac
  • 1 篇 chen shouyan
  • 1 篇 ke da
  • 1 篇 möller r

语言

  • 35 篇 英文
  • 3 篇 其他
检索条件"主题词=Adaptive learning algorithm"
38 条 记 录,以下是31-40 订阅
Sequential sampling techniques for algorithmic learning theory
收藏 引用
THEORETICAL COMPUTER SCIENCE 2005年 第1期348卷 3-14页
作者: Watanabe, O Tokyo Inst Technol Dept Math & Comp Sci Tokyo 1528552 Japan
A sequential sampling algorithm or adaptive sampling algorithm is a sampling algorithm that obtains instances sequentially one by one and determines from these instances whether it has already seen enough number of in... 详细信息
来源: 评论
Sequential sampling techniques for algorithmic learning theory  11th
收藏 引用
11th International Conference on algorithmic learning Theory (ALT 2000)
作者: Watanabe, O Tokyo Inst Technol Dept Math & Comp Sci Tokyo 1528552 Japan
A sequential sampling algorithm or adaptive sampling algorithm is a sampling algorithm that obtains instances sequentially one by one and determines from these instances whether it has already seen enough number of in... 详细信息
来源: 评论
Coupled principal component analysis
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS 2004年 第1期15卷 214-222页
作者: Möller, R Könies, A Max Planck Inst Psychol Res Robot Grp D-80799 Munich Germany Max Planck Inst Plasma Phys Stellarator Theory Grp D-17491 Greifswald Germany
A framework for a class of coupled principal component learning rules is presented. In coupled rules, eigenvectors and eigenvalues of a covariance matrix are simultaneously estimated in coupled equations. Coupled rule... 详细信息
来源: 评论
RBF neural network based predictive control of active power filter
RBF neural network based predictive control of active power ...
收藏 引用
IEEE Region 10 Conference on Analog and Digital Techniques in Electrical Engineering
作者: Wang, XH Xiao, JH Changsha Univ Sci & Technol Dept Elect & Informat Engn Changsha Peoples R China
A RBF neural network based predictive control of active power filter is presented in this paper. RBF neural network is employed to predict future harmonic compensating current. In order to make the predictive model mu... 详细信息
来源: 评论
Next day peak load forecasting using neural network with adaptive learning algorithm based on similarity
收藏 引用
ELECTRIC MACHINES AND POWER SYSTEMS 2000年 第7期28卷 613-624页
作者: Senjyu, T Sakihara, H Tamaki, Y Uezato, K Univ Ryukyus Fac Engn Okinawa 9030213 Japan
In this article toe propose the adaptive learning algorithm, of neural network with respect to a rapid temperature change of forecasted day. The proposed adaptive learning algorithm is used to shift the learning range... 详细信息
来源: 评论
adaptive learning algorithm for cerebellar model articulation controller neural network based hybrid-type controller (Part I)
American Society of Mechanical Engineers, Dynamic Systems an...
收藏 引用
American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC 2000年 68卷 201-210页
作者: Abdelhameed, Magdy Mohamed Cetinkunt, Sabri Des. and Prod. Eng. Department Faculty of Engineering Ain Shams University Abasiah Cairo Egypt Mechanical Engineering Department University of Illinois at Chicago 842 W Taylor St. Chicago IL 60607-7022 United States
Cerebellar model articulation controller (CMAC) is a useful neural network learning technique. It was developed two decades ago but yet lacks an adequate learning algorithm, especially when it is used in a hybrid-type... 详细信息
来源: 评论
adaptive learning algorithms to incorporate additional functional constraints into neural networks
收藏 引用
NEUROCOMPUTING 2000年 第1-4期35卷 73-90页
作者: Jeong, SY Lee, SY Korea Adv Inst Sci & Technol Dept Elect Engn Yusong Gu Taejon 305701 South Korea Korea Adv Inst Sci & Technol Computat & Neural Syst Lab Brain Sci Res Ctr Yusong Gu Taejon 305701 South Korea
In this paper, adaptive learning algorithms to obtain better generalization performance are proposed. We specifically designed cost terms for the additional functionality based on the first- and second-order derivativ... 详细信息
来源: 评论
POWER-DEMAND FORECASTING USING A NEURAL-NETWORK WITH AN adaptive learning algorithm
收藏 引用
IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION 1995年 第6期142卷 560-568页
作者: DASH, PK LIEW, AC RAMAKRISHNA, G REG ENGN COLL ROUKELA 769008INDIA
An artificial neural network with an adaptive-Kalman-filter-based learning algorithm is presented for forecasting weather-sensitive loads. The proposed model can differentiate between weekday and weekend loads, This n... 详细信息
来源: 评论