There have been results on uniform distribution modulo 1 of sequences of the form {alpha f(n)}(infinity)(n=1 )where f (n) is an arithmetic function and alpha is an irrational number. For example, {alpha n}(infinity)(n...
详细信息
There have been results on uniform distribution modulo 1 of sequences of the form {alpha f(n)}(infinity)(n=1 )where f (n) is an arithmetic function and alpha is an irrational number. For example, {alpha n}(infinity)(n=1 ) (Bohl, Sierpinski and Weyl) and {alpha Omega( n ) } (infinity)(n=1 )(Erdos and Delange) have been shown to be uniformly distributed modulo 1 for all irrational numbers alpha . De Koninck and Katai have shown that {alpha phi(n)}(infinity)(n=1 ) and {alpha sigma(n)}(infinity)(n=1 ) are uniformly distributed modulo 1 for a subset of irrational numbers alpha . In this article, we will extend their result by showing that the sequences {alpha phi(n)}(infinity)(n=1 ) and {alpha sigma(n)}(infinity)(n=1 )are uniformly distributed modulo 1 when alpha is a non-Liouville number. The proof will use Weyl's criterion, upper bounds of exponential functions established by Vinogradov and Vaughan, and the notion of a thin set established by Pollack and Vandehey. There are two corollaries that arise from the result of this article: { 10 (alpha phi )( n ) } (infinity)(n=1 ) and { 10 alpha sigma ( n ) } (infinity)(n=1 )are strong Benford sequences for all non-Liouville numbers alpha , and the sequences {F(n) + alpha phi(n)}(infinity)(n=1 )and {F(n) + alpha sigma ( n ) } (infinity)(n=1 ) are uniformly distributed modulo 1 for all non-Liouville numbers alpha and additive function F .
The study of functional equations in which the unknown functions are assumed to be additive has a long history and continues to be an active area of research. Here we discuss methods for solving functional equations o...
详细信息
The study of functional equations in which the unknown functions are assumed to be additive has a long history and continues to be an active area of research. Here we discuss methods for solving functional equations of the form (& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}) & sum;j=1kxpjfj(xqj)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{j=1}<^>{k} x<^>{p_j}f_j(x<^>{q_j}) = 0$$\end{document}, where the pj,qj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_j,q_j$$\end{document} are non-negative integers, the fj:R -> S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_j:R \rightarrow S$$\end{document} are additive functions, S is a commutative ring, and R is a sub-ring of S. This area of research has ties to commutative algebra since homomorphisms and derivations satisfy equations of this type. Methods for solving all homogeneous equations of the form (& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}) can be found in Ebanks (Aequ Math 89(3):685-718, 2015), Ebanks (Results Math 73(3):120, 2018) and Gselmann et
The main goal of this paper is to show that if a real-valued function defined on a groupoid satisfies a certain Levi-Civita-type functional equation, then it also fulfills a Cauchy-Schwarz-type functional inequality. ...
详细信息
The main goal of this paper is to show that if a real-valued function defined on a groupoid satisfies a certain Levi-Civita-type functional equation, then it also fulfills a Cauchy-Schwarz-type functional inequality. In particular, if the groupoid is the multiplicative structure of a commutative ring, then we can establish the existence of nontrivial additive functions satisfying inequalities connected to the multiplicative structure.
Let X be a unital algebra with unit e and Y a real Hausdorff topological vector space. In this article, we obtain the general set-valued solution of the Davison functional equation F(xy+x)+F(y)=F(xy)+F(x+y)\documentcl...
详细信息
Let X be a unital algebra with unit e and Y a real Hausdorff topological vector space. In this article, we obtain the general set-valued solution of the Davison functional equation F(xy+x)+F(y)=F(xy)+F(x+y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F(xy+x)+F(y)=F(xy)+F(x+y) \end{aligned}$$\end{document}for functions F defined on X with values in the set of nonempty compact and convex subsets of Y. Additionally, we investigate various extensions of the Davison set-valued functional equation.
We prove that the countable product of lines contains a Haarnull Haar -meager Borel linear subspace L that cannot be covered by countably many closed Haar -meager sets. This example is applied to studying the interpla...
详细信息
We prove that the countable product of lines contains a Haarnull Haar -meager Borel linear subspace L that cannot be covered by countably many closed Haar -meager sets. This example is applied to studying the interplay between various classes of "large" sets and Kuczma-Ger classes in the topological vector spaces R n for n <= omega .
作者:
Laporta, MaurizioUniv Napoli
Complesso Monte S Angelo Dipartimento Matemat & Applicaz Via Cinthia I-80126 Naples NA Italy
The Ramanujan series attached to a complex-valued arithmetic function g ($) over cap in a fixed integer a is the series Sigma(n)g ($) over cap (n)cn(a), where cn(a) is the so-calledRamanujan sum. Assuming that g ($) o...
详细信息
The Ramanujan series attached to a complex-valued arithmetic function g ($) over cap in a fixed integer a is the series Sigma(n)g ($) over cap (n)cn(a), where cn(a) is the so-calledRamanujan sum. Assuming that g ($) over cap is additive or, more generally, a product of a multiplicative function with an additive one, we study the relationships between the Ramanujan series attached to g ($) over cap in a positive integer a and its subseries obtained by taking the terms with n coprime to a fixed integer d >= 2.
w(n) be an additive nonnegative integer-valued arithmetic function equal to 1 on primes. We study the distribution of n + w(n) modulo a prime p and give a lower bound for the density of numbers not representable as n ...
详细信息
w(n) be an additive nonnegative integer-valued arithmetic function equal to 1 on primes. We study the distribution of n + w(n) modulo a prime p and give a lower bound for the density of numbers not representable as n + w(n).
Motivated by the well known fact that any nonzero solution of the fundamental Cauchy functional equation may arbitrarily be prescribed on a Hamel basis, we deal with the following problem: given a functional equation ...
详细信息
Motivated by the well known fact that any nonzero solution of the fundamental Cauchy functional equation may arbitrarily be prescribed on a Hamel basis, we deal with the following problem: given a functional equation E-1(phi) = E2(phi) (*) with the unknown function phi : X -> Y, what must the set (SIC) (SIC) = Z subset of X be like in order to ensure that an arbitrary *** 0 : Z -> Y admits a unique function phi : X -> Y solving equation (*) and such that phi(| Z) =phi 0;if such a set does exist it is termed to be a basic set. We discuss the problem of existence of basic sets for exponential functions, d'Alembert's functions, sine functions, Cuculi`ere's functions and hyperbolic tangent type functions, among others.
Let S be a semigroup and K a field. A function f:S -> K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \u...
详细信息
Let S be a semigroup and K a field. A function f:S -> K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:S \rightarrow K$$\end{document} is additive if f(xy)=f(x)+f(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(xy) = f(x) + f(y)$$\end{document} for all x,y is an element of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in S$$\end{document}, and functions g,h:S -> K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g,h:S \rightarrow K$$\end{document} form a sine pair if they satisfy the sine addition law g(xy)=g(x)h(y)+h(x)g(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(xy) = g(x)h(y) + h(x)g(y)$$\end{document} for all x,y is an element of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in S$$\end{document}. Adding these two equations we arrive at the functional equation (*) f(xy)+g(xy)=f(x)+f(y)+g(x)h(y)+h(x)g(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage
Let R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R$$\end{document} be the set of real numbers and Y a Banach space. In this work, we study the Hyers-Ulam stability for the Abel functional equation f(x+y)=g(xy)+h(x-y),x,y is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(x+y)=g(xy)+h(x-y),\;\;x,y\in \mathbb R \end{aligned}$$\end{document}where f,g,h:R -> Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f,g,h:\mathbb R\rightarrow Y$$\end{document} are unknown functions. The perturbation of above equation in the restricted domains are also proved. As a direct consequence we obtain asymptotic behaviors of the proposed equation.
暂无评论