咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 39 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 109 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 101 篇 工学
    • 63 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 13 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 9 篇 软件工程
    • 6 篇 仪器科学与技术
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 测绘科学与技术
    • 2 篇 航空宇航科学与技...
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物工程
  • 28 篇 理学
    • 10 篇 生物学
    • 7 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 5 篇 化学
    • 3 篇 大气科学
    • 2 篇 天文学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地理学
    • 1 篇 地质学
    • 1 篇 系统科学
    • 1 篇 生态学
  • 16 篇 医学
    • 8 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 2 篇 农学

主题

  • 109 篇 adversarial auto...
  • 16 篇 deep learning
  • 14 篇 anomaly detectio...
  • 8 篇 generative adver...
  • 8 篇 unsupervised lea...
  • 7 篇 feature extracti...
  • 6 篇 variational auto...
  • 6 篇 machine learning
  • 5 篇 generative adver...
  • 4 篇 semi-supervised ...
  • 4 篇 human activity r...
  • 3 篇 ground reaction ...
  • 3 篇 synthetic apertu...
  • 3 篇 time series
  • 3 篇 gan
  • 2 篇 clustering
  • 2 篇 drug discovery
  • 2 篇 inertial measure...
  • 2 篇 generative model
  • 2 篇 synthetic data g...

机构

  • 3 篇 china univ geosc...
  • 2 篇 chongqing normal...
  • 2 篇 zhejiang univ co...
  • 2 篇 gifu univ fac en...
  • 2 篇 istanbul tech un...
  • 2 篇 ludwig maximilia...
  • 2 篇 kyoto univ grad ...
  • 2 篇 aselsan inc anka...
  • 1 篇 wenzhou univ col...
  • 1 篇 univ michigan de...
  • 1 篇 nanjing univ pos...
  • 1 篇 hong kong polyte...
  • 1 篇 shandong univ ke...
  • 1 篇 fudan univ sch c...
  • 1 篇 univ waterloo wa...
  • 1 篇 univ vienna fac ...
  • 1 篇 key lab comp vir...
  • 1 篇 middlesex univ e...
  • 1 篇 south china univ...
  • 1 篇 yonsei univ grad...

作者

  • 3 篇 hernandez vincen...
  • 3 篇 venture gentiane
  • 3 篇 zuo renguang
  • 2 篇 zhang fuzhi
  • 2 篇 yaslan yusuf
  • 2 篇 tuzen ahmet
  • 2 篇 goto keisuke
  • 2 篇 yan hao
  • 2 篇 zhang chunjie
  • 2 篇 aizawa hiroaki
  • 2 篇 saito takaho
  • 2 篇 xiong yihui
  • 2 篇 zhou jinglin
  • 2 篇 kato kunihito
  • 2 篇 yeh huai-ming
  • 2 篇 li mingyong
  • 2 篇 cao zeyu
  • 1 篇 li yonghui
  • 1 篇 meng fanli
  • 1 篇 zhang tao

语言

  • 107 篇 英文
  • 2 篇 其他
检索条件"主题词=Adversarial Autoencoder"
109 条 记 录,以下是11-20 订阅
排序:
LLP-AAE: Learning from label proportions with adversarial autoencoder
收藏 引用
NEUROCOMPUTING 2023年 第1期537卷 282-295页
作者: Wang, Bo Sun, Yingte Tong, Qiang Univ Int Business & Econ Sch Informat Technol & Management Beijing 100029 Peoples R China
This paper presents an effective weakly supervised learning algorithm LLP-AAE to leverage the adversar-ial autoencoder (AAE) for learning from label proportions (LLP), in which only the bag-level proportional informat... 详细信息
来源: 评论
AAE-Dpeak-SC: A novel unsupervised clustering method for space target ISAR images based on adversarial autoencoder and density peak-spectral clustering
收藏 引用
ADVANCES IN SPACE RESEARCH 2022年 第5期70卷 1472-1495页
作者: Yang, Hong Ding, Wenzhe Yin, Canbin Beijing Inst Tracking & Telecommun Technol Beijing 100096 Peoples R China Space Engn Univ Beijing 101416 Peoples R China
Aiming at the problem of unlabeled ISAR image clustering of space targets, the paper proposes a new unsupervised clustering method based on adversarial autoencoder (AAE) and density peak-spectral clustering (Dpeak-SC)... 详细信息
来源: 评论
An active learning method using deep adversarial autoencoder-based sufficient dimension reduction neural network for high-dimensional reliability analysis
收藏 引用
RELIABILITY ENGINEERING & SYSTEM SAFETY 2024年 247卷
作者: Bao, Yuequan Sun, Huabin Guan, Xiaoshu Tian, Yuxuan Harbin Inst Technol Key Lab Smart Prevent Mitigat Civil Engn Disaster Minist Ind & Informat Technol Harbin 150090 Peoples R China Harbin Inst Technol Key Lab Struct Dynam Behav & Control Minist Educ Harbin 150090 Peoples R China Harbin Inst Technol Sch Civil Engn Harbin 150090 Peoples R China
Reliability analysis often requires time-consuming evaluations, especially when dealing with high-dimensional and nonlinear problems. To address this challenge, surrogate model methods are frequently employed. One way... 详细信息
来源: 评论
Estimation of 6D Pose of Objects Based on a Variant adversarial autoencoder
收藏 引用
NEURAL PROCESSING LETTERS 2023年 第7期55卷 9581-9596页
作者: Huang, Dan Ahn, Hyemin Li, Shile Hu, Yueming Lee, Dongheui South China Univ Technol Sch Mech & Automot Engn Guangzhou 510640 Peoples R China Tech Univ Munich Dept Elect & Comp Engn D-80333 Munich Germany South China Univ Technol Sch Automot Sci & Engn Guangzhou 510640 Peoples R China
The goal of this paper is to estimate object's 6D pose based on the texture-less dataset. The pose of each projection view is obtained by rendering the 3D model of each object, and then the orientation feature of ... 详细信息
来源: 评论
AUTH: An adversarial autoencoder Based Unsupervised Insider Threat Detection Scheme for Multisource Logs
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2024年 第9期20卷 10954-10965页
作者: Zhu, Xingjian Dong, Jiankuo Qi, Jin Zhou, Zhenguo Dong, Zhenjiang Sun, Yanfei Wang, Moyu Nanjing Univ Posts & Telecommun Coll Automat Nanjing 210003 Peoples R China Nanjing Univ Posts & Telecommun Coll Artificial Intelligence Nanjing 210003 Peoples R China Nanjing Univ Posts & Telecommun Sch Comp Sci Nanjing 210003 Peoples R China Nanjing Univ Posts & Telecommun Sch Internet Things Nanjing 210003 Peoples R China Nanjing Univ Posts & Telecommun Dept Internet Things Nanjing 210003 Peoples R China Nanjing Univ Posts & Telecommun Jiangsu Engn Res Ctr HPC & Intelligent Proc Nanjing 210003 Peoples R China Hefei Yun Micro Elect Co Ltd Hefei 230088 Peoples R China
Deep learning has shown broad research prospects in addressing insider threats, a serious problem currently facing industrial information systems. Although deep learning is able to capture effective feature representa... 详细信息
来源: 评论
AAE-SC: A scRNA-Seq Clustering Framework Based on adversarial autoencoder
收藏 引用
IEEE ACCESS 2020年 8卷 178962-178975页
作者: Wu, Yulun Guo, Yanming Xiao, Yandong Lao, Songyang Natl Univ Def Technol Coll Syst Engn Changsha 410072 Peoples R China
Single-cell RNA sequencing (scRNA-seq) provides the expression profiles of individual cells, and it is expected to provide higher cellular differential resolution than traditional bulk RNA sequencing. In scRNA-seq ana... 详细信息
来源: 评论
Research on Digital Camouflage Pattern Generation Algorithm Based on adversarial autoencoder Network
收藏 引用
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE 2020年 第6期34卷
作者: Yang, Xin Xu, Wei-Dong Jia, Qi Li, Ling Army Engn Univ Natl Key Lab Lightning Protect & Electromagnet Ca Nanjing 210007 Jiangsu Peoples R China
In the past, most of the digital camouflage used textural features to extract the configuration features of spots in gray images, unable to effectively utilize the position relationship between color information. In o... 详细信息
来源: 评论
Video anomaly detection and localization via multivariate gaussian fully convolution adversarial autoencoder
收藏 引用
NEUROCOMPUTING 2019年 369卷 92-105页
作者: Li, Nanjun Chang, Faliang Shandong Univ Sch Control Sci & Engn 17923 Jingshi Rd Jinan 250061 Shandong Peoples R China
In this paper, we present a novel deep learning based method for video anomaly detection and localization. The key idea of our approach is that the latent space representations of normal samples are trained to accord ... 详细信息
来源: 评论
Semisupervised hyperspectral imagery classification based on a three-dimensional convolutional adversarial autoencoder model with low sample requirements
收藏 引用
JOURNAL OF APPLIED REMOTE SENSING 2020年 第2期14卷
作者: Cao, Zeyu Li, Xiaorun Zhao, Liaoying Zhejiang Univ Coll Elect Engn Hangzhou Peoples R China HangZhou Dianzi Univ China Inst Comp Applicat Technol Hangzhou Peoples R China
Although there are many state-of-the-art methods for hyperspectral classification, data deficiency is a problem that should be addressed before popularizing hyperspectral technology. To solve this problem, it is worth... 详细信息
来源: 评论
Deep feature representation with online convolutional adversarial autoencoder for nonlinear process monitoring
收藏 引用
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS 2024年 155卷
作者: Yang, Xu Xiao, Jieshi Huang, Jian Peng, Kaixiang Univ Sci & Technol Beijing Sch Automat & Elect Engn Key Lab Knowledge Automat Ind Proc Minist Educ Beijing 100083 Peoples R China
Background: The significant nonlinearity between the monitoring variables introduces challenges in the task of features extraction when implementing fault detection for an industrial process. Recently, neural network ... 详细信息
来源: 评论