咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 39 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 109 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 101 篇 工学
    • 63 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 13 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 9 篇 软件工程
    • 6 篇 仪器科学与技术
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 测绘科学与技术
    • 2 篇 航空宇航科学与技...
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物工程
  • 28 篇 理学
    • 10 篇 生物学
    • 7 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 5 篇 化学
    • 3 篇 大气科学
    • 2 篇 天文学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地理学
    • 1 篇 地质学
    • 1 篇 系统科学
    • 1 篇 生态学
  • 16 篇 医学
    • 8 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 2 篇 农学

主题

  • 109 篇 adversarial auto...
  • 16 篇 deep learning
  • 14 篇 anomaly detectio...
  • 8 篇 generative adver...
  • 8 篇 unsupervised lea...
  • 7 篇 feature extracti...
  • 6 篇 variational auto...
  • 6 篇 machine learning
  • 5 篇 generative adver...
  • 4 篇 semi-supervised ...
  • 4 篇 human activity r...
  • 3 篇 ground reaction ...
  • 3 篇 synthetic apertu...
  • 3 篇 time series
  • 3 篇 gan
  • 2 篇 clustering
  • 2 篇 drug discovery
  • 2 篇 inertial measure...
  • 2 篇 generative model
  • 2 篇 synthetic data g...

机构

  • 3 篇 china univ geosc...
  • 2 篇 chongqing normal...
  • 2 篇 zhejiang univ co...
  • 2 篇 gifu univ fac en...
  • 2 篇 istanbul tech un...
  • 2 篇 ludwig maximilia...
  • 2 篇 kyoto univ grad ...
  • 2 篇 aselsan inc anka...
  • 1 篇 wenzhou univ col...
  • 1 篇 univ michigan de...
  • 1 篇 nanjing univ pos...
  • 1 篇 hong kong polyte...
  • 1 篇 shandong univ ke...
  • 1 篇 fudan univ sch c...
  • 1 篇 univ waterloo wa...
  • 1 篇 univ vienna fac ...
  • 1 篇 key lab comp vir...
  • 1 篇 middlesex univ e...
  • 1 篇 south china univ...
  • 1 篇 yonsei univ grad...

作者

  • 3 篇 hernandez vincen...
  • 3 篇 venture gentiane
  • 3 篇 zuo renguang
  • 2 篇 zhang fuzhi
  • 2 篇 yaslan yusuf
  • 2 篇 tuzen ahmet
  • 2 篇 goto keisuke
  • 2 篇 yan hao
  • 2 篇 zhang chunjie
  • 2 篇 aizawa hiroaki
  • 2 篇 saito takaho
  • 2 篇 xiong yihui
  • 2 篇 zhou jinglin
  • 2 篇 kato kunihito
  • 2 篇 yeh huai-ming
  • 2 篇 li mingyong
  • 2 篇 cao zeyu
  • 1 篇 li yonghui
  • 1 篇 meng fanli
  • 1 篇 zhang tao

语言

  • 107 篇 英文
  • 2 篇 其他
检索条件"主题词=Adversarial Autoencoder"
109 条 记 录,以下是51-60 订阅
排序:
druGAN: An Advanced Generative adversarial autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico
收藏 引用
MOLECULAR PHARMACEUTICS 2017年 第9期14卷 3098-3104页
作者: Kadurin, Artur Nikolenko, Sergey Khrabrov, Kuzma Aliper, Alex Zhavoronkov, Alex Johns Hopkins Univ Eastern Emerging Technol Ctr Insilico Med Inc Pharmaceut Artificial Intelligence Dept Baltimore MD 21218 USA Natl Res Univ Higher Sch Econ St Petersburg 190008 Russia Steklov Math Inst St Petersburg St Petersburg 191023 Russia Mail Ru Grp Ltd Search Dept Moscow 125167 Russia Biogerontol Res Fdn Trevissome Pk Truro TR4 8UN England Moscow Inst Phys & Technol Dolgoprudnyi 141701 Russia Kazan Fed Univ Kazan 420008 Republic Of Tat Russia
Deep generative adversarial networks (GANs) are the emerging technology in drug discovery and biomarker development. In our recent work, we demonstrated a proof-of-concept of implementing deep generative adversarial a... 详细信息
来源: 评论
Semantic-guided autoencoder adversarial hashing for large-scale cross-modal retrieval
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2022年 第2期8卷 1603-1617页
作者: Li, Mingyong Li, Qiqi Ma, Yan Yang, Degang Chongqing Normal Univ Coll Comp & Informat Sci Chongqing 401331 Peoples R China
With the vigorous development of mobile Internet technology and the popularization of smart devices, while the amount of multimedia data has exploded, its forms have become more and more diversified. People's dema... 详细信息
来源: 评论
ADAE: adversarial DISTRIBUTED SOURCE autoencoder FOR POINT CLOUD COMPRESSION
ADAE: ADVERSARIAL DISTRIBUTED SOURCE AUTOENCODER FOR POINT C...
收藏 引用
IEEE International Conference on Image Processing (ICIP)
作者: Milani, Simone Univ Padova Dept Informat Engn Padua Italy
The current paper presents an adversarial autoencoding strategy for voxelized point cloud geometry based on the principles of distributed source coding. The encoder characterizes the input voxel blocks with an array o... 详细信息
来源: 评论
Multi-modal data novelty detection with adversarial autoencoders
收藏 引用
APPLIED SOFT COMPUTING 2024年 165卷
作者: Chen, Zeqiu Zhao, Kaiyi Sun, Ruizhi China Agr Univ Coll Informat & Elect Engn Beijing 100083 Peoples R China Minist Agr Sci Res Base Integrated Technol Precis Agr Anim Hu Beijing 100083 Peoples R China
Novelty detection is usually defined as the identification of new or abnormal objects (outliers) from the normal ones (inliers), which has wide potential applications including instrument fault, credit card theft warn... 详细信息
来源: 评论
Self-Attention-Based Multivariate Anomaly Detection for CPS Time Series Data with adversarial autoencoders  41
Self-Attention-Based Multivariate Anomaly Detection for CPS ...
收藏 引用
第41届中国控制会议
作者: Qiwen Li Tijin Yan Huanhuan Yuan Yuanqing Xia School of Mathematics and Statistics Beijing Institute of Technology School of Automation Beijing Institute of Technology School of Astronautics Northwestern Polytechnical University
Data-driven anomaly detection continues to be challenging due to the increased complexity of modern cyber physical systems(CPS s) and their temporal *** detection techniques are widely used through VAE-based framework... 详细信息
来源: 评论
DEEP SEMANTIC adversarial HASHING BASED ON autoencoder FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
DEEP SEMANTIC ADVERSARIAL HASHING BASED ON AUTOENCODER FOR L...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Li, Mingyong Wang, Hongya Donghua Univ Coll Comp Sci & Technol Shanghai Peoples R China Chongqing Normal Univ Coll Comp & Informat Sci Chongqing Peoples R China
Thanks to the powerful feature learning capabilities of deep learning, some studies have introduced GANs into the cross-modal hashing. However, The GAN-based hashing methods are generally unstable and difficult to tra... 详细信息
来源: 评论
A new class of fault detection and diagnosis methods by fusion of spatially distributed and time-dependent features
收藏 引用
JOURNAL OF PROCESS CONTROL 2025年 146卷
作者: Chen, Yan Zhang, Xiaoyu Li, Dazi Zhou, Jinglin Beijing Univ Chem Technol Coll Informat Sci & Technol Beijing 100029 Peoples R China
Nonlinear, non-Gaussian, and dynamic features pose a great challenge for complex fault detection and fault diagnosis (FDD). Focusing on fault detection, independent component analysis (ICA) and adversarial autoencoder... 详细信息
来源: 评论
Coordinated Distributionally Robust Optimal Allocation of Energy Storage System for HV-MV Distribution Network Resilience Enhancement
收藏 引用
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS 2025年 第2期61卷 2011-2024页
作者: Cao, Kuan Liu, Yutian Wang, Chunyi Shandong Univ Key Lab Power Syst Intelligent Dispatch & Control Minist Educ Jinan 250061 Peoples R China State Grid Shandong Elect Power Co Dev Planning Dept Jinan 250001 Peoples R China
To solve the problem of power imbalance under extreme and normal scenarios in high voltage (HV) and middle voltage (MV) distribution networks with high penetrations of photovoltaic (PV), the paper proposes a distribut... 详细信息
来源: 评论
TFAM-AAE-Uk: A Dual-Metric Spectrum Anomaly Detection Algorithm
收藏 引用
IEEE COMMUNICATIONS LETTERS 2024年 第11期28卷 2638-2642页
作者: Ji, Haipeng Zhang, Tao Qiao, Xiaoqiang Wu, Hao Gui, Guan Nanjing Univ Informat Sci & Technol Sch Elect & Informat Engn Nanjing 210044 Peoples R China Natl Univ Def Technol Res Inst 63 Nanjing 210007 Peoples R China Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing 210003 Peoples R China
Effective spectrum management critically depends on the ability to detect anomalies caused by both legal user (LU) violations and illegal user (IU) intrusions. In this study, we introduce TFAM-AAE-U-k, an innovative s... 详细信息
来源: 评论
Incorporating Geological Knowledge into Deep Learning to Enhance Geochemical Anomaly Identification Related to Mineralization and Interpretability
收藏 引用
MATHEMATICAL GEOSCIENCES 2024年 第6期56卷 1233-1254页
作者: Zhang, Chunjie Zuo, Renguang China Univ Geosci State Key Lab Geol Proc & Mineral Resources Wuhan 430074 Peoples R China
Effective geochemical anomaly identification is crucial in mineral exploration. Recent trends have favored deep learning (DL) to decipher geochemical survey data. Yet purely data-driven DL algorithms often lack logica... 详细信息
来源: 评论