咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 39 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 109 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 101 篇 工学
    • 63 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 13 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 9 篇 软件工程
    • 6 篇 仪器科学与技术
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 测绘科学与技术
    • 2 篇 航空宇航科学与技...
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物工程
  • 28 篇 理学
    • 10 篇 生物学
    • 7 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 5 篇 化学
    • 3 篇 大气科学
    • 2 篇 天文学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地理学
    • 1 篇 地质学
    • 1 篇 系统科学
    • 1 篇 生态学
  • 16 篇 医学
    • 8 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 2 篇 农学

主题

  • 109 篇 adversarial auto...
  • 16 篇 deep learning
  • 14 篇 anomaly detectio...
  • 8 篇 generative adver...
  • 8 篇 unsupervised lea...
  • 7 篇 feature extracti...
  • 6 篇 variational auto...
  • 6 篇 machine learning
  • 5 篇 generative adver...
  • 4 篇 semi-supervised ...
  • 4 篇 human activity r...
  • 3 篇 ground reaction ...
  • 3 篇 synthetic apertu...
  • 3 篇 time series
  • 3 篇 gan
  • 2 篇 clustering
  • 2 篇 drug discovery
  • 2 篇 inertial measure...
  • 2 篇 generative model
  • 2 篇 synthetic data g...

机构

  • 3 篇 china univ geosc...
  • 2 篇 chongqing normal...
  • 2 篇 zhejiang univ co...
  • 2 篇 gifu univ fac en...
  • 2 篇 istanbul tech un...
  • 2 篇 ludwig maximilia...
  • 2 篇 kyoto univ grad ...
  • 2 篇 aselsan inc anka...
  • 1 篇 wenzhou univ col...
  • 1 篇 univ michigan de...
  • 1 篇 nanjing univ pos...
  • 1 篇 hong kong polyte...
  • 1 篇 shandong univ ke...
  • 1 篇 fudan univ sch c...
  • 1 篇 univ waterloo wa...
  • 1 篇 univ vienna fac ...
  • 1 篇 key lab comp vir...
  • 1 篇 middlesex univ e...
  • 1 篇 south china univ...
  • 1 篇 yonsei univ grad...

作者

  • 3 篇 hernandez vincen...
  • 3 篇 venture gentiane
  • 3 篇 zuo renguang
  • 2 篇 zhang fuzhi
  • 2 篇 yaslan yusuf
  • 2 篇 tuzen ahmet
  • 2 篇 goto keisuke
  • 2 篇 yan hao
  • 2 篇 zhang chunjie
  • 2 篇 aizawa hiroaki
  • 2 篇 saito takaho
  • 2 篇 xiong yihui
  • 2 篇 zhou jinglin
  • 2 篇 kato kunihito
  • 2 篇 yeh huai-ming
  • 2 篇 li mingyong
  • 2 篇 cao zeyu
  • 1 篇 li yonghui
  • 1 篇 meng fanli
  • 1 篇 zhang tao

语言

  • 107 篇 英文
  • 2 篇 其他
检索条件"主题词=Adversarial Autoencoder"
109 条 记 录,以下是71-80 订阅
排序:
Language/Dialect Recognition Based on Unsupervised Deep Learning
收藏 引用
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 2018年 第5期26卷 873-882页
作者: Zhang, Qian Hansen, John H. L. Univ Texas Dallas Erik Jonsson Sch Engn Ctr Robust Speech Syst Richardson TX 75080 USA
Over the past decade, bottleneck features within an i-Vector framework have been used for state-of-the-art language/dialect identification (LID/DID). However, traditional bottleneck feature extraction requires additio... 详细信息
来源: 评论
Multi-view face generation via unpaired images
收藏 引用
VISUAL COMPUTER 2022年 第7期38卷 2539-2554页
作者: Wang, Shuai Zou, Yanni Min, Weidong Wu, Jiansheng Xiong, Xin Nanchang Univ Sch Informat Engn Nanchang 330031 Jiangxi Peoples R China Nanchang Univ Sch Software Nanchang 330047 Jiangxi Peoples R China Jiangxi Key Lab Smart City Nanchang 330047 Jiangxi Peoples R China
Multi-view face generation from a single image is an essential and challenging problem. Most of the existing methods need to use paired images when training models. However, collecting and labeling large-scale paired ... 详细信息
来源: 评论
An adversarial Neuro-Tensorial Approach for Learning Disentangled Representations
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2019年 第6-7期127卷 743-762页
作者: Wang, Mengjiao Shu, Zhixin Cheng, Shiyang Panagakis, Yannis Samaras, Dimitris Zafeiriou, Stefanos Imperial Coll London London England SUNY Stony Brook Stony Brook NY 11794 USA Middlesex Univ London England
Several factors contribute to the appearance of an object in a visual scene, including pose, illumination, and deformation, among others. Each factor accounts for a source of variability in the data, while the multipl... 详细信息
来源: 评论
TFAM-AAE-Uk: A Dual-Metric Spectrum Anomaly Detection Algorithm
收藏 引用
IEEE COMMUNICATIONS LETTERS 2024年 第11期28卷 2638-2642页
作者: Ji, Haipeng Zhang, Tao Qiao, Xiaoqiang Wu, Hao Gui, Guan Nanjing Univ Informat Sci & Technol Sch Elect & Informat Engn Nanjing 210044 Peoples R China Natl Univ Def Technol Res Inst 63 Nanjing 210007 Peoples R China Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing 210003 Peoples R China
Effective spectrum management critically depends on the ability to detect anomalies caused by both legal user (LU) violations and illegal user (IU) intrusions. In this study, we introduce TFAM-AAE-U-k, an innovative s... 详细信息
来源: 评论
EAAE: A Generative adversarial Mechanism Based Classfication Method for Small-scale Datasets
收藏 引用
NEURAL PROCESSING LETTERS 2023年 第2期55卷 969-987页
作者: Chen, Ping Deng, Yuhui Zou, Qiang Lu, Lijuan Li, Hong Jinan Univ Dept Comp Sci Guangzhou 510632 Peoples R China Southwest Univ Dept Comp Sci Chongqing 400715 Peoples R China South China Univ Technol Sch Business Adm Guangzhou 510640 Peoples R China
When used for small-scale datasets classification tasks, deep neural networks are difficult to train, which results in the network not extracting useful features and the low accuracy of network. This paper proposes a ... 详细信息
来源: 评论
Incorporating Geological Knowledge into Deep Learning to Enhance Geochemical Anomaly Identification Related to Mineralization and Interpretability
收藏 引用
MATHEMATICAL GEOSCIENCES 2024年 第6期56卷 1233-1254页
作者: Zhang, Chunjie Zuo, Renguang China Univ Geosci State Key Lab Geol Proc & Mineral Resources Wuhan 430074 Peoples R China
Effective geochemical anomaly identification is crucial in mineral exploration. Recent trends have favored deep learning (DL) to decipher geochemical survey data. Yet purely data-driven DL algorithms often lack logica... 详细信息
来源: 评论
Hyperspectral target detection using self-supervised background learning
收藏 引用
ADVANCES IN SPACE RESEARCH 2024年 第2期74卷 628-646页
作者: Ali, Muhammad Khizer Amin, Benish Maud, Abdur Rahman Bhatti, Farrukh Aziz Sukhia, Komal Nain Khurshid, Khurram Inst Space Technol Dept Elect Engn iVis Lab Islamabad 44000 Pakistan Bahria Univ Ctr Excellence Artificial Intelligence CoE AI Islamabad 44000 Pakistan Alf Ain Technol Pvt Ltd Lahore 54890 Pakistan NewVat Technol Pvt Ltd Islamabad 44000 Pakistan
Hyperspectral target detection is challenging in scenarios where spectral variability is high due to noise, spectral redundancy, and mixing. In addition, this spectral variability also creates the need for target dete... 详细信息
来源: 评论
Visual Interpretable Deep Learning Algorithm for Geochemical Anomaly Recognition
收藏 引用
NATURAL RESOURCES RESEARCH 2022年 第5期31卷 2211-2223页
作者: Luo, Zijing Zuo, Renguang Xiong, Yihui China Univ Geosci State Key Lab Geol Proc & Mineral Resources Wuhan 430074 Peoples R China
Deep learning algorithms (DLAs) have achieved better results than traditional methods in the field of multivariate geochemical anomaly recognition because of their strong ability to extract feature from nonlinear data... 详细信息
来源: 评论
Self-Supervised Learning Based Anomaly Detection in Synthetic Aperture Radar Imaging
IEEE OPEN JOURNAL OF SIGNAL PROCESSING
收藏 引用
IEEE OPEN JOURNAL OF SIGNAL PROCESSING 2022年 3卷 440-449页
作者: Muzeau, Max Ren, Chengfang Angelliaume, Sebastien Datcu, Mihai Ovarlez, Jean-Philippe Univ Paris Saclay SONDRA CentraleSupelec F-91190 Gif Sur Yvette France Univ Paris Saclay DEMR CentraleSupelec F-91190 Gif Sur Yvette France Univ Politehn Bucharest UPB Romania & German Aerosp Ctr DLR D-82234 Wessling Germany
In this paper, we proposed to investigate unsupervised anomaly detection in Synthetic Aperture Radar (SAR) images. Our approach considers anomalies as abnormal patterns that deviate from their surroundings without pri... 详细信息
来源: 评论
Root cause analysis of manufacturing variation from optical scanning data
收藏 引用
ANNALS OF OPERATIONS RESEARCH 2024年 第1-2期339卷 111-130页
作者: Bui, Anh Tuan Virginia Commonwealth Univ Dept Stat Sci & Operat Res Richmond VA 23284 USA
Identifying the root causes of part-to-part variation is a central problem in most six-sigma programs, especially of modern manufacturing processes. This is challenging as the sources and patterns of the variation are... 详细信息
来源: 评论