咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 39 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 109 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 101 篇 工学
    • 63 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 13 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 9 篇 软件工程
    • 6 篇 仪器科学与技术
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 测绘科学与技术
    • 2 篇 航空宇航科学与技...
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物工程
  • 28 篇 理学
    • 10 篇 生物学
    • 7 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 5 篇 化学
    • 3 篇 大气科学
    • 2 篇 天文学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地理学
    • 1 篇 地质学
    • 1 篇 系统科学
    • 1 篇 生态学
  • 14 篇 医学
    • 8 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 2 篇 农学

主题

  • 109 篇 adversarial auto...
  • 16 篇 deep learning
  • 14 篇 anomaly detectio...
  • 8 篇 generative adver...
  • 8 篇 unsupervised lea...
  • 7 篇 feature extracti...
  • 6 篇 variational auto...
  • 6 篇 machine learning
  • 5 篇 generative adver...
  • 4 篇 semi-supervised ...
  • 4 篇 human activity r...
  • 3 篇 ground reaction ...
  • 3 篇 synthetic apertu...
  • 3 篇 time series
  • 3 篇 gan
  • 2 篇 clustering
  • 2 篇 drug discovery
  • 2 篇 inertial measure...
  • 2 篇 generative model
  • 2 篇 synthetic data g...

机构

  • 3 篇 china univ geosc...
  • 2 篇 chongqing normal...
  • 2 篇 zhejiang univ co...
  • 2 篇 gifu univ fac en...
  • 2 篇 istanbul tech un...
  • 2 篇 ludwig maximilia...
  • 2 篇 kyoto univ grad ...
  • 2 篇 aselsan inc anka...
  • 1 篇 wenzhou univ col...
  • 1 篇 univ michigan de...
  • 1 篇 nanjing univ pos...
  • 1 篇 hong kong polyte...
  • 1 篇 shandong univ ke...
  • 1 篇 fudan univ sch c...
  • 1 篇 univ waterloo wa...
  • 1 篇 univ vienna fac ...
  • 1 篇 key lab comp vir...
  • 1 篇 middlesex univ e...
  • 1 篇 south china univ...
  • 1 篇 yonsei univ grad...

作者

  • 3 篇 hernandez vincen...
  • 3 篇 venture gentiane
  • 3 篇 zuo renguang
  • 2 篇 zhang fuzhi
  • 2 篇 yaslan yusuf
  • 2 篇 tuzen ahmet
  • 2 篇 goto keisuke
  • 2 篇 yan hao
  • 2 篇 zhang chunjie
  • 2 篇 aizawa hiroaki
  • 2 篇 saito takaho
  • 2 篇 xiong yihui
  • 2 篇 zhou jinglin
  • 2 篇 kato kunihito
  • 2 篇 yeh huai-ming
  • 2 篇 li mingyong
  • 2 篇 cao zeyu
  • 1 篇 li yonghui
  • 1 篇 meng fanli
  • 1 篇 zhang tao

语言

  • 107 篇 英文
  • 2 篇 其他
检索条件"主题词=Adversarial autoencoder"
109 条 记 录,以下是91-100 订阅
Sketch-aae: A Seq2Seq Model to Generate Sketch Drawings  3
Sketch-aae: A Seq2Seq Model to Generate Sketch Drawings
收藏 引用
3rd International Conference on Vision, Image and Signal Processing (ICVISP)
作者: Lu, Jia Li, Xueming Zhang, Xianlin Beijing Univ Posts & Telecommun Sch Digital Media & Design Arts Beijing Peoples R China Beijing Univ Posts & Telecommun Beijing Key Lab Network Syst & Network Culture Beijing Peoples R China Beijing Univ Posts & Telecommun Dept Informat & Commun Engn Beijing Peoples R China
Sketch plays an important role in human nonverbal communication, which is a superior way to describe specific objects visually. Generating human free-hand sketches has become topical in computer graphics and vision, i... 详细信息
来源: 评论
AMAD: adversarial Multiscale Anomaly Detection on High-Dimensional and Time-Evolving Categorical Data  1
AMAD: Adversarial Multiscale Anomaly Detection on High-Dimen...
收藏 引用
1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data with KDD (DLP KDD)
作者: Gao, Zheng Guo, Lin Ma, Chi Ma, Xiao Sun, Kai Xiang, Hang Zhu, Xiaoqiang Li, Hongsong Liu, Xiaozhong Indiana Univ Bloomington IN 47405 USA Alibaba Grp Hangzhou Peoples R China
Anomaly detection is facing with emerging challenges in many important industry domains, such as cyber security and online recommendation and advertising. The recent trend in these areas calls for anomaly detection on... 详细信息
来源: 评论
Analysis of the B5G/6G Communication Power Entropy Patterns Based on Generative AI Methods  3
Analysis of the B5G/6G Communication Power Entropy Patterns ...
收藏 引用
3rd Conference on Information Technology and Data Science
作者: Talbi, Djamila Gal, Zoltan Univ Debrecen Fac Informat Debrecen Hungary
Moving toward new and higher frequencies would bring the 6G communication network into practice. Using a new MAC mechanism will enhance and overcome the THz challenges. Our paper focused on analyzing the entropy inter... 详细信息
来源: 评论
UNSUPERVISED ANOMALY DETECTION FOR TIME SERIES WITH OUTLIER EXPOSURE  2021
UNSUPERVISED ANOMALY DETECTION FOR TIME SERIES WITH OUTLIER ...
收藏 引用
33rd International Conference on Scientific and Statistical Database Management (SSDBM)
作者: Feng, Jiaming Huang, Zheng Guo, Jie Qiu, Weidong Shanghai Jiao Tong Univ Shanghai Peoples R China
It is of great practical significance to accurately model and analyze abnormal events in time series. For example, the identification of anomaly patterns on infrastructure sensor curves helps locate equipment failures... 详细信息
来源: 评论
Spectrum-Guided adversarial Disparity Learning  20
Spectrum-Guided Adversarial Disparity Learning
收藏 引用
26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
作者: Liu, Zhe Yao, Lina Bai, Lei Wang, Xianzhi Wang, Can Univ New South Wales Sydney NSW Australia Univ Technol Sydney Sydney NSW Australia Griffith Univ Nathan Qld Australia
It has been a significant challenge to portray intraclass disparity precisely in the area of activity recognition, as it requires a robust representation of the correlation between subject-specific variation for each ... 详细信息
来源: 评论
Unsupervised Abstractive Text Summarization with Length Controlled autoencoder  19
Unsupervised Abstractive Text Summarization with Length Cont...
收藏 引用
19th IEEE-India-Council International Conference (INDICON)
作者: Dugar, Abhinav Singh, Gaurav Navyasree, B. Kumar, Anand M. Natl Inst Technol Karnataka Dept Informat Technol Surathkal 575025 India
This work deals with taking an unsupervised approach to abstractive text summarization where a large set of sentences is converted into a concise summary highlighting the essential details. This is achieved with the u... 详细信息
来源: 评论
FraudJudger: Fraud Detection on Digital Payment Platforms with Fewer Labels  21st
FraudJudger: Fraud Detection on Digital Payment Platforms wi...
收藏 引用
21st International Conference on Information and Communications Security (ICICS)
作者: Deng, Ruoyu Ruan, Na Zhang, Guangsheng Zhang, Xiaohu Shanghai Jiao Tong Univ Dept CSE MoE Key Lab Artificial Intelligence Shanghai Peoples R China China Telecom Bestpay Co Ltd Beijing Peoples R China
Automated fraud detection on electronic payment platforms is a tough problem. Fraud users often exploit the vulnerability of payment platforms and the carelessness of users to defraud money, steal passwords, do money ... 详细信息
来源: 评论
Image Embedding for Detecting Irregularity  3rd
Image Embedding for Detecting Irregularity
收藏 引用
3rd International Conference on Computer Vision and Image Processing (CVIP)
作者: Sharma, M. K. Sheet, D. Biswas, Prabir Kumar IIT Kharagpur Adv Technol Dev Ctr Kharagpur W Bengal India IIT Kharagpur Elect Engn Kharagpur W Bengal India IIT Kharagpur Elect & Elect Commun Engn Kharagpur W Bengal India
Detecting irregularity in an image or video is an important task in quality control or automatic visual inspection. This paper presents an image embedding technique for detecting an irregularity or abnormality in imag... 详细信息
来源: 评论
DP-VAE: Human-Readable Text Anonymization for Online Reviews with Differentially Private Variational autoencoders  22
DP-VAE: Human-Readable Text Anonymization for Online Reviews...
收藏 引用
31st ACM Web Conference (WWW)
作者: Weggenmann, Benjamin Rublack, Valentin Andrejczuk, Michael Mattern, Justus Kerschbaum, Florian SAP Secur Res Karlsruhe Germany Univ Edinburgh Edinburgh Scotland Univ Waterloo Waterloo ON Canada
While vast amounts of personal data are shared daily on public online platforms and used by companies and analysts to gain valuable insights, privacy concerns are also on the rise: Modern authorship attribution techni... 详细信息
来源: 评论
adversarial random graph neural network for anomaly detection
收藏 引用
DIGITAL SIGNAL PROCESSING 2024年 146卷
作者: Tuzen, Ahmet Yaslan, Yusuf Aselsan Inc Ankara Turkiye Istanbul Tech Univ Istanbul Turkiye
Anomaly detection is distinguishing unusual objects from normal patterns. It is a complex task due to unpredictable nature of anomalies, which can appear in many forms or they can be hidden by mimicking normal behavio... 详细信息
来源: 评论