咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 39 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 109 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 101 篇 工学
    • 63 篇 计算机科学与技术...
    • 33 篇 电气工程
    • 13 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 9 篇 软件工程
    • 6 篇 仪器科学与技术
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 测绘科学与技术
    • 2 篇 航空宇航科学与技...
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物工程
  • 28 篇 理学
    • 10 篇 生物学
    • 7 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 5 篇 化学
    • 3 篇 大气科学
    • 2 篇 天文学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地理学
    • 1 篇 地质学
    • 1 篇 系统科学
    • 1 篇 生态学
  • 16 篇 医学
    • 8 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 2 篇 农学

主题

  • 109 篇 adversarial auto...
  • 16 篇 deep learning
  • 14 篇 anomaly detectio...
  • 8 篇 generative adver...
  • 8 篇 unsupervised lea...
  • 7 篇 feature extracti...
  • 6 篇 variational auto...
  • 6 篇 machine learning
  • 5 篇 generative adver...
  • 4 篇 semi-supervised ...
  • 4 篇 human activity r...
  • 3 篇 ground reaction ...
  • 3 篇 synthetic apertu...
  • 3 篇 time series
  • 3 篇 gan
  • 2 篇 clustering
  • 2 篇 drug discovery
  • 2 篇 inertial measure...
  • 2 篇 generative model
  • 2 篇 synthetic data g...

机构

  • 3 篇 china univ geosc...
  • 2 篇 chongqing normal...
  • 2 篇 zhejiang univ co...
  • 2 篇 gifu univ fac en...
  • 2 篇 istanbul tech un...
  • 2 篇 ludwig maximilia...
  • 2 篇 kyoto univ grad ...
  • 2 篇 aselsan inc anka...
  • 1 篇 wenzhou univ col...
  • 1 篇 univ michigan de...
  • 1 篇 nanjing univ pos...
  • 1 篇 hong kong polyte...
  • 1 篇 shandong univ ke...
  • 1 篇 fudan univ sch c...
  • 1 篇 univ waterloo wa...
  • 1 篇 univ vienna fac ...
  • 1 篇 key lab comp vir...
  • 1 篇 middlesex univ e...
  • 1 篇 south china univ...
  • 1 篇 yonsei univ grad...

作者

  • 3 篇 hernandez vincen...
  • 3 篇 venture gentiane
  • 3 篇 zuo renguang
  • 2 篇 zhang fuzhi
  • 2 篇 yaslan yusuf
  • 2 篇 tuzen ahmet
  • 2 篇 goto keisuke
  • 2 篇 yan hao
  • 2 篇 zhang chunjie
  • 2 篇 aizawa hiroaki
  • 2 篇 saito takaho
  • 2 篇 xiong yihui
  • 2 篇 zhou jinglin
  • 2 篇 kato kunihito
  • 2 篇 yeh huai-ming
  • 2 篇 li mingyong
  • 2 篇 cao zeyu
  • 1 篇 li yonghui
  • 1 篇 meng fanli
  • 1 篇 zhang tao

语言

  • 107 篇 英文
  • 2 篇 其他
检索条件"主题词=Adversarial autoencoder"
109 条 记 录,以下是61-70 订阅
排序:
Robust Anomaly Detection in Images Using adversarial autoencoders
Robust Anomaly Detection in Images Using Adversarial Autoenc...
收藏 引用
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: Beggel, Laura Pfeiffer, Michael Bischl, Bernd Bosch Ctr Artificial Intelligence Renningen Germany Ludwig Maximilians Univ Munchen Dept Stat Munich Germany
Reliably detecting anomalies in a given set of images is a task of high practical relevance for visual quality inspection, surveillance, or medical image analysis. autoencoder neural networks learn to reconstruct norm... 详细信息
来源: 评论
Self-Attention-Based Multivariate Anomaly Detection for CPS Time Series Data with adversarial autoencoders  41
Self-Attention-Based Multivariate Anomaly Detection for CPS ...
收藏 引用
第41届中国控制会议
作者: Qiwen Li Tijin Yan Huanhuan Yuan Yuanqing Xia School of Mathematics and Statistics Beijing Institute of Technology School of Automation Beijing Institute of Technology School of Astronautics Northwestern Polytechnical University
Data-driven anomaly detection continues to be challenging due to the increased complexity of modern cyber physical systems(CPS s) and their temporal *** detection techniques are widely used through VAE-based framework... 详细信息
来源: 评论
Inductive Conformal Out-of-distribution Detection based on adversarial autoencoders
Inductive Conformal Out-of-distribution Detection based on A...
收藏 引用
IEEE International Conference on Omni-Layer Intelligent Systems (IEEE COINS)
作者: Cai, Feiyang Ozdagli, Ali, I Potteiger, Nicholas Koutsoukos, Xenofon Vanderbilt Univ Inst Software Integrated Syst Nashville TN 37235 USA
Machine learning components are used extensively to cope with various complex tasks in highly-uncertain environments. However, Out-Of-Distribution (OOD) data may lead to predictions with large errors and degrade perfo... 详细信息
来源: 评论
Semi-supervised Learning for Human Activity Recognition Using adversarial autoencoders
Semi-supervised Learning for Human Activity Recognition Usin...
收藏 引用
ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp) / ACM International Symposium on Wearable Computers (ISWC)
作者: Balabka, Dmitrijs Transport & Telecommun Inst Riga Latvia
SHL recognition challenge 2019 goal is to recognize eight locomotion and transportation (activities) from the inertial sensor data of a smartphone. The dataset contains information from different mobile-phones placeme... 详细信息
来源: 评论
Multi-modal data novelty detection with adversarial autoencoders
收藏 引用
APPLIED SOFT COMPUTING 2024年 165卷
作者: Chen, Zeqiu Zhao, Kaiyi Sun, Ruizhi China Agr Univ Coll Informat & Elect Engn Beijing 100083 Peoples R China Minist Agr Sci Res Base Integrated Technol Precis Agr Anim Hu Beijing 100083 Peoples R China
Novelty detection is usually defined as the identification of new or abnormal objects (outliers) from the normal ones (inliers), which has wide potential applications including instrument fault, credit card theft warn... 详细信息
来源: 评论
The effect of augmentation and transfer learning on the modelling of lower-limb sockets using 3D adversarial autoencoders
收藏 引用
DISPLAYS 2022年 74卷
作者: Costa, Ana Rodrigues, Daniel Castro, Marina Assis, Sofia Oliveira, Helder P. Univ Porto Fac Engn Rua Dr Roberto Frias P-4200465 Porto Portugal Adapttech Rua Oliveira Monteiro 649 P-4050445 Porto Portugal INESC TEC Rua Dr Roberto Frias P-4200465 Porto Portugal Univ Porto Fac Sci Rua Campo Alegre P-4169007 Porto Portugal
Lower limb amputation is a condition affecting millions of people worldwide. Patients are often prescribed with lower limb prostheses to aid their mobility, but these prostheses require frequent adjustments through an... 详细信息
来源: 评论
Detecting in-vehicle intrusion via semi-supervised learning-based convolutional adversarial autoencoders
收藏 引用
VEHICULAR COMMUNICATIONS 2022年 38卷
作者: Hoang, Thien-Nu Kim, Daehee Soonchunhyang Univ Dept Future Convergence Technol Asan 31538 Chuncheongnam D South Korea
With the development of autonomous vehicle technology, the controller area network (CAN) bus has become the de facto standard for an in-vehicle communication system because of its simplicity and efficiency. However, w... 详细信息
来源: 评论
PESTA: An Elastic Motion Capture Data Retrieval Method
收藏 引用
Journal of Computer Science & Technology 2023年 第4期38卷 867-884页
作者: 蒋子飞 李伟 黄艳 尹义龙 郭宗杰 彭京亮 School of Software Shandong UniversityJinan 250101China Ming Hsieh Department of Electrical and Computer Engineering University of Southern California Los Angeles 90089U.S.A Shandong Provincial Key Laboratory of Network Based Intelligent Computing Jinan 250022China School of Information Science and Engineering University of JinanJinan 250022China
Prevalent use of motion capture(MoCap)produces large volumes of data and MoCap data retrieval becomes crucial for efficient data *** clips may not be neatly segmented and labeled,increasing the difficulty of *** order... 详细信息
来源: 评论
Kick: Shift-N-Overlap Cascades of Transposed Convolutional Layer for Better Autoencoding Reconstruction on Remote Sensing Imagery
收藏 引用
IEEE ACCESS 2020年 8卷 107244-107259页
作者: Hong, Seungkyun Song, Sa-Kwang Korea Univ Sci & Technol UST Dept Data & HPC Sci Daejeon 34113 South Korea Korea Inst Sci & Technol Informat KISTI Res Data Sharing Ctr Daejeon 34141 South Korea
A convolutional autoencoder is an essential deep neural model architecture for understanding and predicting large-scale and widespread multi-dimensional information such as remote sensing imagery. To training a convol... 详细信息
来源: 评论
A Feature Mapping Technique for Complex Data Object Generation With Likelihood and Deep Generative Approaches
收藏 引用
IEEE ACCESS 2023年 11卷 136643-136653页
作者: Muramudalige, Shashika R. Jayasumana, Anura P. Wang, Haonan Colorado State Univ Dept Elect & Comp Engn Ft Collins CO 80523 USA Colorado State Univ Dept Stat Ft Collins CO 80523 USA
When a sufficient amount of training data is available, Machine Learning (ML) models show great promise for solving problems involving complex and dynamic patterns. Social and behavioral domains are rich with such cha... 详细信息
来源: 评论